

FACULTY OF SCIENCE

DEPARTMENT OF PURE AND APPLIED MATHEMATICS			
MODULE:	MATHEN	IATICAL ANALYSIS B – MAA00B1	
CAMPUS:	APK		
ASSESSMENT: EXAMINATION			
DATE:		27 NOVEMBER 2017]
ASSESSORS:		MR W VAN REENEN	
INTERNAL MODER	ATOR:	MR M POTGIETER	89
DURATION:		2 HOURS	09
INITIALS AND SURNAME:			
STUDENT NUMBER:			
CONTACT NUMBER:			

NUMBER OF PAGES: 14 (INCLUDING COVER PAGE)

INSTRUCTIONS:

- ANSWER ALL THE QUESTIONS IN PEN.
- ALL GRAPHS MUST BE DRAWN IN PEN.
- NO PENCIL OR TIPEX ALLOWED.
- SHOW ALL THE NECESSARY CALCULATIONS CLEARLY.
- IF FORMULAS ARE USED THEY MUST BE STATED AS MARKS ARE GIVEN TO THEM.
- SCIENTIFIC AND FINANCIAL CALCULATORS ARE ALLOWED.
- IF NECESSARY, ROUND OFF TO TWO DECIMAL PLACES.
- THE QUESTIONS CAN BE ANSWERED IN ANY ORDER.

Given that $f(x) = e^{2x+2}$, determine $f^{-1}(x)$.

Question 2

Given the following matrices:

$$A = \begin{bmatrix} 2 & -1 \\ 2 & 4 \end{bmatrix} \qquad B = \begin{bmatrix} -2 & 1 \\ -2 & 3 \end{bmatrix} \qquad C = \begin{bmatrix} -1 & 3 \\ 5 & -1 \end{bmatrix} \qquad I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

2.1 Determine: $A + 5I$ [2]

2.2 Determine:
$$A^T - \frac{1}{2}C$$

[2]

[3]

[6]

2.3 Determine: B^3

[2]

Question 3

Find A^{-1} if $A = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$

	[200	500	ן500
Given the input-output matrix $M =$	$\begin{bmatrix} 200\\ 400\\ 600 \end{bmatrix}$	200	900
	L600	800	0]

[1]

4.3	Determine the Leontief matrix A.	[1]
-----	----------------------------------	-----

4.4	Determine the production matrix X.	[1]
-----	------------------------------------	-----

[9]

4.5 If the external demand changes to $D_{new} = \begin{bmatrix} 600\\ 805 \end{bmatrix}$, determine the new production matrix X_{new} . (Hint: (I - A)X = D)) [5]

Question 5 Differentiate the following function through first principles: $f(x) = \frac{x+3}{x-3}$

{Note: You are not allowed to use the differentiation rules}

[5]

Given the following case-defined function:

$$f(x) = \begin{cases} (x+1)^2 - 1 & \text{if } -3 \le x < 1 \\ 3 & \text{if } 1 < x < 3 \\ -x+6 & \text{if } 3 \le x \le 6 \end{cases}$$

6.1 Graph the function.

6.2 Determine:

6.2.1 $\lim_{x \to 1^{-}} f(x)$.	[1]
-----------------------------------	-----

6.2.2	$\lim_{x\to 1^+}f(x).$	[1]
-------	------------------------	-----

- [1] 6.2.3 $\lim_{x \to 1} f(x)$.
- 6.2.4 *f*(1). [1]
- 6.3 Is the case defined function continuous at x = 1? (**YES** or **NO**) [1]

[8]

[3]

Question 8

Determine the following limits:

7.1
$$\lim_{x \to -2} \frac{x^4 - 16}{x + 2}$$
 [1]

7.2
$$\lim_{x \to -\infty} \frac{8x^4 - 7x^3 - 5x^2 - 2x}{4x^4 + 1000}$$
 [1]

$y = m n^2$	8.1	$y = \ln \pi^{\log e}$		[]	[]
-------------	-----	------------------------	--	----	----

$$8.2 \qquad y = \sqrt[4]{\sqrt[3]{\sqrt{x}}}$$

[10]

8.3 $y = \ln \sqrt{3x - 3}$

8.5 $y = \sqrt[3]{5x-5}$

 $8.6 \qquad y = \frac{e^x}{\ln x} \tag{3}$

[1.5]

[1.5]

[2]

Use implicit differentiation to find the derivative:

 $\ln x \cdot e^y + 2x^2 + 2y^2 = 2$

Question 10

Prove the following differentiation rule:

If f(x) = m(x).n(x), then f'(x) = n(x).m'(x) + m(x).n'(x).

[5]

Use logarithmic differentiation to find the derivative:

$$y = \sqrt{\frac{x^2 + 2}{x^2 - 2}}$$

Question 12

Given the following function:

$$f(x) = (x+2)^3 - 2$$

12.1 Determine the *domain* of the function.

[4]

[5]

[1]

12.2 Determine f'(x)

12.3 Determine f''(x)

12.4 Determine the interval where the function is concave up. [1]

Question 13

Given the following function:

$$f(x) = \frac{2x^2}{x^2 - 1}$$

13.1 Determine the critical points/s of f(x). [4]

[1]

[9]

13.2 Determine the f''(x).

13.3 Using the second derivative test, determine whether the critical point/s determined in Question 8.1 are a local minimum or local maximum. [2]

Question 14

Find the indefinite integral:

14.1

$$\int \frac{e^x + e^{2x}}{e^x} dx$$

[7]

[3]

14.2

$$\int (2x+2)e^{2x^2+4x+1}\,dx$$

Question 15

The demand function for a given product is p = f(q) = 100 - 0.05q. The supply function is p = g(q) = 10 + 0.1q.

Find the Consumer's Surplus and Producer's Surplus under market equilibrium.

[4]

[7]

End of Paper – Total 89 Marks

Use this space if you want to redo a question. Clearly indicate at the question that the answer is on Page 14.