

FACULTY OF SCIENCE

DE	PARTMENT OF PURE AND APPLIED MATH	EMATICS
MODULE:	INTRODUCTORY MATHEMATICAL ANALYSIS A	– MAA00A1 & MAT00A1
CAMPUS:	АРК	
ASSESSMENT:	SUPPLEMENTARY EXAM	
DATE:	JULY 2017	
ASSESSORS:	MR C HATINGIMANA MS ML JUGA MS M NOUKO MR W VAN REENEN	71
INTERNAL MODERA	TOR: MR MSW POTGIETER	
DURATION:	2 HOURS	
INITIALS AND SURN STUDENT NUMBER: CONTACT NUMBER:		
NUMBER OF PAGES	: 12 (INCLUDING COVER PAGE)	
INSTRUCTIONS: • ANSWER AI • ALL GRAPH • NO PENCIL • SHOW ALL • IF FORMUL • SCIENTIFIC • IF NECESS	LL THE QUESTIONS IN PEN. IS MUST BE DRAWN IN PEN. OR TIPEX ALLOWED. THE NECESSARY CALCULATIONS CLEARLY. AS ARE USED THEY MUST BE STATED AS MAR AND FINANCIAL CALCULATORS ARE ALLOWE ARY, ROUND OFF TO TWO DECIMAL PLACES. TONS CAN BE ANSWERED IN ANY ORDER.	

Simplify the following expressions completely:

1.1
$$\frac{x^4-1}{x^2y-4xy+3y} \div \frac{2x^2+2}{2x^2-3x-9}$$
 [5]

1.2
$$\frac{(x^3)^2}{x^5} \times \left[\frac{(\sqrt{x})^{12}}{x^3}\right]^2$$

[3]

[8]

Question 3

Rationalise the denominator of the following fraction:

$$\frac{1}{2 + \sqrt{y + 4}}$$

Solve for *x* in the following equations:

$\ln(12x^2 - 10x + 9) = \ln(12x^2 + 19)$ 3.1 [2]

$$3.2 \quad \frac{e^{(5-2x)}}{e^{(x+1)}} = e^{10}$$

[2]

[5]

3]

Three cards are drawn from a deck of 52 cards without replacement. Find the probability that:

4.1 All three cards are spades.

4.2 The first card is a spade and the two others are diamonds. [2]

4.3 The first card is a diamond, second card is a spade and the last card is a heart. [2]

4.4 All cards are black.[2]

4.5 All cards are not black.

[10]

[2]

[2]

Given the following system of constraints:

$$-40x + 20y \ge -120$$
$$-2x + y \le 8$$
$$y \le -2x + 10$$
$$x, y \ge 0$$

6.1 Graph all of the inequalities on the same set of axes, clearly indicating all intercepts and the feasible region. [5]

6.2 Determine the corner points of the feasible region. [5]

- 5 -

6.3 If possible, determine the value of *x* and *y* that will minimize the following function: [1]

$$P=0.4x-0.2y.$$

Question 7

Differentiate each of the following:

7.1
$$f(x) = \ln(5x^2 + 10)$$
.

[2]

[7]

7.3
$$f(x) = \frac{2x+9}{e^{x-2}}$$

[3]

[2]

Given the consumption function of a country:

$$C = 9 + 0.8I^2 - 0.3\sqrt{I}$$

8.1 Find the function describing the marginal propensity to consume. [1]

8.2 Find the marginal propensity to consume if I = 25 [1]

8.3 Find the marginal propensity to save if I = 25. [1]

Question 9

Given the following function:

$$f(x) = 2x^3 - 9x^2 + 12x + 7$$

9.1 Determine the Domain of the function.

[3]

[10]

[1]

9.2	Determine the coordinate/s of the turning point/s.	[2]

9.3 Determine whether the turning point/s are maximum or minimum. [2]

9.4 Determine the intervals along which the function is increasing and decreasing. [2]

9.6 Determine the intervals of concavity.

Question 10

You are **not** allowed to use a financial calculator for this question.

Today, Charlotte deposits money into an account which earns 5% compounded annually for 7 years. How much did she deposit today that yielded her the same amount in the future, as would R2,000 deposited at the end of each year for 7 years at 6% compounded annually?

[6]

[2]

You are only allowed to use a financial calculator for this question.

11.1 Given a nominal rate of 7.63% compounded quarterly, what is the effective rate? [2]

11.2 Find the future value of an investment of R1200 at the beginning of each year for 12 years at the rate of 8% compounded annually. [2]

Answer:				
---------	--	--	--	--

11.3 An initial investment of R10,000 in a business guarantees the following cash flows:

Year	Cash Flow
1	R2,000
2	R1,500
3	R1,500
4	R8,000

If we assume an interest rate of 6% compounded annually, determine the net present value of the cash flows. [2]

Answer:	
---------	--

11.4 *South African Airways (SAA)* wants to replace one of their *Boeing 737-400* aircrafts in 5 years' time with a *Boeing 737-800 MAX. SAA* estimate that they will be able to sell off their current machine for R 400,000,000 whilst a new machine is estimated at R 1,000,000,000. They want to set up a sinking fund for the new purchase, by using the scrap value of their current machine as deposit on the new machine. *Pinnacle Industrial Bank* offers *SAA* a savings option, where they will make payments at the start of each month and will earn interest at a rate of 10%, compounded monthly. Determine the required monthly payment into this savings option. [3]

Answer:	
---------	--

End of Assessment – Total 71 Marks

[9]

Use this space if you want to redo a question. Clearly indicate at the question that the answer is on Page 12.