UNIVERSITY
JOHANNESBURG

FACULTY OF SCIENCE

SURNAME AND INITIALS

STUDENT NUMBER

CONTACT NUMBER

NUMBER OF PAGES: \quad 1+11 PAGES (including front page)
INSTRUCTIONS: ANSWER ALL THE QUESTIONS IN PEN.
NO CALCULATORS ARE ALLOWED.
If you require extra space, continue on the adjacent blank page next to it and indicate this clearly.

Question 1 [5 marks]
For questions $1.1-1.5$, choose one correct answer, and make a cross (X) in the correct block.

Question	a	b	\mathbf{c}	\mathbf{d}	\mathbf{e}
1.1					
1.2					
1.3					
1.4					
1.5					

1.1 The average value of $f(x)=x^{2} \sqrt{x^{3}+1}$ on the closed interval $[0,2]$ is:
a) $\frac{26}{9}$
b) $\frac{13}{3}$
c) $\frac{26}{3}$
d) 3
e) None of the above
1.2 Which trigonometric substitution can be used to evaluate the integral $\int \frac{x^{3}}{\sqrt{x^{2}+4}} d x$?
a) $x=2 \sec \theta$,
b) $x=2 \tan \theta$,
c) $x=2 \cos \theta$,
d) $x=2 \csc \theta$,
e) None of the above
1.3 Write the equation $r=\cos \theta$ using rectangular coordinates.
a) $x^{2}+y^{2}=y$
b) $(x+y)^{2}=x$
c) $x^{2}+y^{2}=x$
d) $(x+y)^{2}=y$
e) None of the above
1.4 Write an equation of the parabola with vertex at the origin and the directrix at $y=5$. [1]
a) $x=5 y^{2}$
b) $x=-\frac{1}{20} y^{2}$
c) $y=-\frac{1}{20} x^{2}$
d) $y=-20 x$
e) None of the above
1.5 If $x=e^{4 t}$ and $y=\sin 6 t$, then $\frac{d y}{d x}=$
а) $\frac{3 e^{-4 t} \cos 6 t}{2}$
b) $\frac{-3 \cos 6 t}{2 e^{4 t}}$
c) $\frac{3 e^{-4 t} \cos t}{2}$
d) $3 e^{-4 t} \cos 6 t$
e) None of the above

Question 2 [10 marks]
Given $f(x)=\frac{x^{2}}{x+1}$, find the following:
a) State the domain.
b) Find the intercepts with the axes.
c) Find all asymptotes of $f(x)$, including any slant asymptote(s).
d) Determine the intervals of increase and decrease, as well as the coordinates of the local maximum and/or minimum values if it is given that: $f^{\prime}(x)=\frac{x(x+2)}{(x+1)^{2}}$

Question 3 [8 marks]
Evaluate the following integrals:
a) $\int \frac{x^{3}-4 x+1}{x^{2}-3 x+2} d x$
b) $\int \frac{d y}{\left(9+y^{2}\right)^{\frac{3}{2}}}$

Question 4 [3 marks]
Determine whether or not the integral is convergent or divergent: $\int_{3}^{4} \frac{1}{\sqrt{x-3}} d x$

Question 5 [3 marks]
Solve the following differential equation: $\quad \frac{d y}{d x}=\frac{y \cos x}{1+y^{2}}, \quad y(0)=1$

Question 6 [3 marks]
Find the length of curve: $\quad f(x)=\left(x-\frac{4}{9}\right)^{\frac{3}{2}}, x \in[1,4]$

Question 7 [3 marks]
Find the area of the surface generated by revolving the following curve about the x-axis.

$$
x=y^{2}-18, \quad 1 \leq y \leq 3
$$

Question 8 [3 mark]
A tank of water in the shape of a cone is leaking water at a constant rate of $2 \mathrm{~m}^{3} /$ hour. The base rate of the tank is 5 m and the height of the tank is 14 m . HINT: The volume of a cone is represented by: $V=\frac{1}{3} \pi r^{2} h$. At what rate is the depth of the water in the tank changing when the depth of the water is $6 m$?

Question 9 [4 marks]
Prove Fermat's Theorem, i.e. prove that if f has a local maximum or minimum at c, and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.

Question 10 [3 marks]
Use the Binomial Theorem to expand $(\sqrt{x}-1)^{4}$. Simplify as far as possible.

Question 11 [5 marks]
a) Find the vertex, focus, directrix and then sketch the curve of $y^{2}+2 y+12 x+25=0$.
b) Find an equation of the hyperbola with vertices ($\pm 3,0$) and asymptotes $y= \pm 2 x$.

Question 12 [4 marks]
Use the method of cylindrical shells to find the volume of the solid generated by rotating the region bounded by the following curves, about the line $x=-3$.

$$
y=-x^{2}+x, \quad y=0
$$

Question 13 [3 marks]
Sketch the region bounded by the given curves and calculate the area of the region.

$$
y=2 x, \quad y=x^{2}-4 x
$$

Question 14 [7 marks]
a) Sketch the curve defined by the parametric equations and indicate the direction with an arrow.

$$
\begin{equation*}
x=4 \cos \theta, \quad y=3 \sin \theta, \quad 0 \leq \theta \leq 2 \pi \tag{3}
\end{equation*}
$$

b) Find the slope and concavity at the point $(2,3)$ for the curve given by parametric equations below .

$$
x=\sqrt{t}, \quad y=\frac{1}{4}\left(t^{2}-4\right), \quad t \geq 0
$$

Question 15 [6 marks]
Consider the polar equation $r=1-2 \sin \theta$
a) Sketch the graph of the given limacon.
b) Set up an integral to find the area inside the inner loop of the given limacon. Simplify the integrand as far as possible.

