

FACULTY OF SCIENCE

DEPARTMENT OF PURE AND APPLIED MATHEMATICS							
MODULE:	ASME1B1	IE1B1					
COURSE:	APPLICATIONS OF CALCULUS	LICATIONS OF CALCULUS FOR ENGINEERS (ALTERNATIVE SEMESTER)					
CAMPUS:	АРК						
EXAM:	JUNE 2017						
DATE:	30/05/2017						
TIME:	12:30 - 14:30						
ASSESSOR:		MR W VAN REENEN					
INTERNAL MOD	ERATOR:	DR A CRAIG					
DURATION:	2 HOURS	MARKS: 70					
SURNAME AND INITIALS							
STUDENT NUMBER							
CONTACT NUM	BER						
NUMBER OF PA	GES: 1+11 PAGES (including fr	ont page)					
INSTRUCTIONS	S: ANSWER ALL THE QUE	STIONS IN PEN.					
	NO CALCULATORS ARE	ALLOWED.					
If you require extra space, continue on the adjacent bla							
page next to it and indicate this clearly.							

Question 1 [5 marks]

Question	a	b	с	d	e
1.1					
1.2					
1.3					
1.4					
1.5					

For questions 1.1 - 1.5, choose **one** correct answer, and make a cross (X) in the correct block.

The average of the function $y = \cos x$ on the interval $x \in [-3, 5]$ is: 1.1 $\sin 5 - \sin 3$

[1]

- a) 8
- $\sin 5 \sin 3$ b) 2
- $\frac{\sin 5 + \sin 3}{2}$ c)

d)
$$\frac{\sin 5 + \sin 3}{2}$$

e) None of the above

Which trigonometric substitution can be used to evaluate the integral $\int \frac{x^3}{\sqrt{x^2-4}} dx$? [1] 1.2

- a) $x = 2 \sec \theta$
- b) $x = 2 \tan \theta$
- c) $x = 2\cos\theta$

d)
$$x = 2 \csc \theta$$

None of the above e)

1.3 Write the equation $r = 10 \sin \theta$ using rectangular coordinates. [1]

- a) $\sqrt{x^2 + y^2} = 10y$ b) $x^2 + y^2 = 10y$ c) $\sqrt{x^2 + y^2} = 10x$

- d) $x^2 + y^2 = 10y$
- e) None of the above

1.4 Write an equation of the parabola with vertex at the origin and focus at (-2, 0). [1]a) $x = -\frac{1}{8}y^2$ b) $x = -\frac{1}{4}x^2$

- c) $x = \frac{1}{8}x^2$
- d) $x = \frac{1}{8}y^2$
- e) None of the above

Consider the differential equation $xy' - 2y = x^2$ where x > 0. The integrating factor I(x)[1] 1.5is: a) $\frac{1}{x^2}$ b) $e^{\ln x^2}$

- c) x^2 d) $e^{2\ln x}$
- e) None of the above

Question 2 [9 marks]

Given $f(x) = \frac{x^2 - 3}{x^3}$, find the following:

a) Intercepts with the x-axis and y-axis.

[2]

[2]

[3]

b) Asymptotes

c) Interval of increase and decrease.

d) Local maximum and minimum values.

 $\underline{\text{Question 3}} [7 \text{ marks}]$

Evaluate the following integrals:

a)
$$\int \frac{3x+11}{x^2-x-6} \, dx$$

[3]

b)
$$\int e^x \cos x \, dx$$

4/11

 $\underline{\text{Question 4}} [3 \text{ marks}]$

Determine whether the following integral is convergent or divergent: $\int_0^\infty \frac{x}{(x^2+2)^2} \, dx.$ [3]

ASME1B1 EXAM - 30 MAY 2017

Question 5 [4 marks]

Solve the following differential equation: $\frac{dy}{dx}\cos^2(x) + y - 1 = 0, \ y(0) = 5$ [4]

 $\underline{\text{Question } 6} \ [3 \text{ marks}]$

Find the length of curve: $y = \ln(\cos x), \ 0 \le x \le \frac{\pi}{3}$

[3]

Question 7 [4 marks]

Find the area of the surface generated by revolving the following curve about the *x*-axis.

$$y = 2\sqrt{1-x}, \ x \in [-1,0]$$
[4]

Question 8 [3 marks]

Air is being pumped into a spherical balloon at a rate of $5cm^3/min$. Determine the rate at which the radius of the balloon is increasing when the diameter of the balloon is 20cm. [HINT: The volume of a sphere is given by $V = \frac{4}{3}\pi r^3$] [3]

Question 9 [4 marks]

Prove Rolle's Theorem, i.e. prove that if a function f satisfies the following hypothesis: 1. f is continuous on the closed interval [a, b], 2. f is differentiable on the open interval (a, b), 3. f(a) = f(b),

then there is a number c in (a, b) such that f'(c) = 0.

[4]

Question 10 [3 marks]

Use the Binomial Theorem to expand $(x - \sqrt{2})^5$. Simplify as far as possible. [3]

Question 11 [5 marks]

a) Find the vertex, focus, directrix and sketch the conic section: $(x+2)^2 = 8(y-3)$. [3]

b) Find an equation of the ellipse with foci $(\pm 2, 0)$ and vertices $(\pm 5, 0)$. [2]

Question 12 [4 marks]

Use the **disk/washer method** to find the volume of the solid generated by rotating the region bounded by the following curves about the *x*-axis.

$$y = 2x^2, \quad y = x + 1, \quad x \ge 0$$
[4]

Question 13 [3 marks]

Sketch the region bounded by the given curves and **set up an integral** to calculate the area of the region. Simplify the integrand as far as possible.

$$y = 4x + 16, \ y = 2x^2 + 10$$
[3]

Question 14 [6 marks]

a) Sketch the curve defined by the parametric equations and indicate the direction with an arrow.

$$x = \ln t, \quad y = \sqrt{t}, \quad t \ge 1$$
[3]

b) Find an equation of the tangent line to the curve given by parametric equations below at $t = \frac{\pi}{4}$.

$$x = \sec t, \ y = \tan t, \ -\frac{\pi}{2} < t < \frac{\pi}{2}$$
[3]

Question 15 [7 marks]

Consider the polar equation $r = 2 + 2\cos\theta$.

a) Sketch the graph of the given cardioid.

[3]

b) Set up an integral to find the area inside the given cardioid and outside r = 3. Simplify the integrand as far as possible. [4]