UNIVERSITY
JOHANNESBURG

FACULTY OF SCIENCE

DEPARTMENT OF PURE AND APPLIED MATHEMATICS		
MODULE:	ASME1B1	
COURSE:	APPLICATIO	TERNATIVE SEMESTER)
CAMPUS:	APK	
EXAM:	JUNE 2017	
DATE:	30/05/2017	
TIME:	12:30-14:30	
ASSESSOR:		MR W VAN REENEN
INTERNAL MO	DERATOR:	DR A CRAIG
DURATION:	2 HOURS	MARKS: 70

SURNAME AND INITIALS

STUDENT NUMBER

CONTACT NUMBER

NUMBER OF PAGES: \quad 1+11 PAGES (including front page)
INSTRUCTIONS: ANSWER ALL THE QUESTIONS IN PEN.
NO CALCULATORS ARE ALLOWED.
If you require extra space, continue on the adjacent blank page next to it and indicate this clearly.

Question 1 [5 marks]
For questions $1.1-1.5$, choose one correct answer, and make a cross (X) in the correct block.

Question	a	b	\mathbf{c}	\mathbf{d}	\mathbf{e}
1.1					
1.2					
1.3					
1.4					
1.5					

1.1 The average of the function $y=\cos x$ on the interval $x \in[-3,5]$ is:
a) $\frac{\sin 5-\sin 3}{8}$
b) $\frac{\sin 5-\sin 3}{2}$
c) $\frac{\sin 5+\sin 3}{8}$
d) $\frac{\sin 5+\sin 3}{2}$
e) None of the above
1.2 Which trigonometric substitution can be used to evaluate the integral $\int \frac{x^{3}}{\sqrt{x^{2}-4}} d x$?
a) $x=2 \sec \theta$
b) $x=2 \tan \theta$
c) $x=2 \cos \theta$
d) $x=2 \csc \theta$
e) None of the above
1.3 Write the equation $r=10 \sin \theta$ using rectangular coordinates.
a) $\sqrt{x^{2}+y^{2}}=10 y$
b) $x^{2}+y^{2}=10 y$
c) $\sqrt{x^{2}+y^{2}}=10 x$
d) $x^{2}+y^{2}=10 y$
e) None of the above
1.4 Write an equation of the parabola with vertex at the origin and focus at $(-2,0)$.
a) $x=-\frac{1}{8} y^{2}$
b) $x=-\frac{1}{4} x^{2}$
c) $x=\frac{1}{8} x^{2}$
d) $x=\frac{1}{8} y^{2}$
e) None of the above
1.5 Consider the differential equation $x y^{\prime}-2 y=x^{2}$ where $x>0$. The integrating factor $I(x)$ is:
a) $\frac{1}{x^{2}}$
b) $e^{\ln x^{2}}$
c) x^{2}
d) $e^{2 \ln x}$
e) None of the above

Question 2 [9 marks]
Given $f(x)=\frac{x^{2}-3}{x^{3}}$, find the following:
a) Intercepts with the x-axis and y-axis.
b) Asymptotes
c) Interval of increase and decrease.
d) Local maximum and minimum values.

Question 3 [7 marks]

Evaluate the following integrals:
a) $\int \frac{3 x+11}{x^{2}-x-6} d x$
b) $\int e^{x} \cos x d x$

Question 4 [3 marks]
Determine whether the following integral is convergent or divergent: $\int_{0}^{\infty} \frac{x}{\left(x^{2}+2\right)^{2}} d x$.

Question 5 [4 marks]
Solve the following differential equation: $\quad \frac{d y}{d x} \cos ^{2}(x)+y-1=0, \quad y(0)=5$

Question 6 [3 marks]
Find the length of curve: $\quad y=\ln (\cos x), \quad 0 \leq x \leq \frac{\pi}{3}$

Question 7 [4 marks]
Find the area of the surface generated by revolving the following curve about the x-axis.

$$
y=2 \sqrt{1-x}, \quad x \in[-1,0]
$$

Question 8 [3 marks]
Air is being pumped into a spherical balloon at a rate of $5 \mathrm{~cm}^{3} / \mathrm{min}$. Determine the rate at which the radius of the balloon is increasing when the diameter of the balloon is 20 cm . [HINT: The volume of a sphere is given by $V=\frac{4}{3} \pi r^{3}$]

Question 9 [4 marks]
Prove Rolle's Theorem, i.e. prove that if a function f satisfies the following hypothesis:

1. f is continuous on the closed interval $[a, b]$,
2. f is differentiable on the open interval (a, b),
3. $f(a)=f(b)$,
then there is a number c in (a, b) such that $f^{\prime}(c)=0$.

Question 10 [3 marks]
Use the Binomial Theorem to expand $(x-\sqrt{2})^{5}$. Simplify as far as possible.

Question 11 [5 marks]
a) Find the vertex, focus, directrix and sketch the conic section: $(x+2)^{2}=8(y-3)$.
b) Find an equation of the ellipse with foci $(\pm 2,0)$ and vertices $(\pm 5,0)$.

Question 12 [4 marks]
Use the disk/washer method to find the volume of the solid generated by rotating the region bounded by the following curves about the x-axis.

$$
y=2 x^{2}, \quad y=x+1, \quad x \geq 0
$$

Question 13 [3 marks]
Sketch the region bounded by the given curves and set up an integral to calculate the area of the region. Simplify the integrand as far as possible.

$$
y=4 x+16, \quad y=2 x^{2}+10
$$

Question 14 [6 marks]
a) Sketch the curve defined by the parametric equations and indicate the direction with an arrow.

$$
\begin{equation*}
x=\ln t, \quad y=\sqrt{t}, \quad t \geq 1 \tag{3}
\end{equation*}
$$

b) Find an equation of the tangent line to the curve given by parametric equations below at $t=\frac{\pi}{4}$.

$$
x=\sec t, y=\tan t, \quad-\frac{\pi}{2}<t<\frac{\pi}{2}
$$

Question 15 [7 marks]

Consider the polar equation $r=2+2 \cos \theta$.
a) Sketch the graph of the given cardioid.
b) Set up an integral to find the area inside the given cardioid and outside $r=3$. Simplify the integrand as far as possible.

