

FACULTY OF SCIENCE

DEPARTMENT OF PURE AND APPLIED MATHEMATICS					
MODULE: ASME1A1					
COURSE: CALCULUS OF ONE VARIABLE FUNCTIONS FOR ENGINEERS				OR ENGINEERS	
	(ALTEI	RNATIVE SEM	IESTER)		
CAMPUS:	АРК				
EXAM: NOVEMBER 2017					
DATE:	20/11/	2017			
TIME:	16:30 -	- 18:30			
ASSESSOR:					MR W VAN REENEN
INTERNAL MO	DERATO	R:			DR A CRAIG
DURATION:					MARKS: 70
SURNAME AN	ID INITIAI	_S			
STUDENT NUI	MBER				
CONTACT NUI	MBER				
NUMBER OF F	PAGES:	1+11 PAGES	(including fro	nt page)	
INSTRUCTIONS:		ANSWER ALL THE QUESTIONS IN PEN			
			ATORS ALLC	WED.	
		If you requ	uire extra s	space, conti	nue on the adjacent blank
		page next	to it and <u>ir</u>	ndicate this	<u>clearly</u> .

Question 1 [10 marks]

Question	a	b	с	d	e
1.1					
1.2					
1.3					
1.4					
1.5					
1.6					
1.7					
1.8					
1.9					
1.10					

For questions 1.1 - 1.10, choose **one** correct answer, and make a cross (X) in the correct block.

1.1 Convert 540° to radians.

a) $\frac{3\pi}{2}$

b) $\frac{2\pi}{3}$

c) $\frac{3\pi}{1}$

d) $\frac{1}{3\pi}$

e) None of the above

1.2 Convert the complex number
$$z = \sqrt{2} - \sqrt{2}i$$
 into polar form. [1]

a)
$$2(\cos(-\frac{\pi}{4}) - i\sin(-\frac{\pi}{4}))$$

- b) $2(\cos(-\frac{7\pi}{4}) i\sin(-\frac{7\pi}{4}))$
- c) $2(\cos(\frac{\pi}{4}) i\sin(\frac{\pi}{4}))$
- d) $\sqrt{2}(\cos(-\frac{\pi}{4}) i\sin(-\frac{\pi}{4}))$
- e) None of the above

1.3 The correct expansion of $\sum_{i=3}^{6} \frac{5^{i-1}}{i-1}$ is:

- a) $\frac{5}{1} + \frac{5^2}{2} + \frac{5^3}{3} + \frac{5^4}{4}$ b) $\frac{5^2}{2} + \frac{5^3}{3} + \frac{5^4}{4} + \frac{5^5}{5}$
- c) $\frac{5^0}{1} + \frac{5^1}{1} + \frac{5^2}{2} + \frac{5^3}{3}$

d)
$$\frac{5^{-1}}{1} + \frac{5^0}{2} + \frac{5^1}{3} + \frac{5^2}{4}$$

e) None of the above

[1]

- 1.4 Find f such that $(f \circ g) = F$ given that $g(x) = \sqrt{x} + 1$ and $F(x) = x + 2\sqrt{x}$. [1] a) $f(x) = x^2 + 2$ b) $f(x) = x^2 - 1$ c) $2(x^2 - 1)$ d) $f(x) = (\sqrt{x} + 1) + 2(\sqrt{\sqrt{x} + 1})$ e) None of the above 1.5 Solve for x in $|3 - 4x| \ge 2$ [1]
- a) $x < \frac{3}{2}$ and x > 0b) $x \ge \frac{1}{4}$ and $x \le \frac{5}{4}$ c) x < 1 and $x > \frac{2}{3}$
- d) $x \le \frac{1}{4}$ and $x \ge \frac{5}{4}$
- e) None of the above

1.6 Find the domain of the function $f(x) = \frac{1}{\sqrt{x-1}}$ [1]

- a) $(-\infty, 0) \cup (0, 1]$
- b) $(-\infty,0) \cup (0,1) \cup (1,\infty)$
- c) $[0,1) \cup (1,\infty)$
- d) $(-\infty, 1) \cup (1, \infty)$
- e) None of the above

1.7 If
$$f(x) = \sin(e^{-x})$$
, then $f'(x) =$ [1]

- a) $-\cos(e^{-x})$
- b) $\cos(e^{-x}) e^{-x}$
- c) $e^{-x}\cos(e^{-x})$
- d) $-e^{-x}\cos(e^{-x})$
- e) None of these

1.8 If f and g are twice differentiable and if h(x) = f(g(x)), then h''(x) = [1]

- a) f''(g(x))g'(x) + f'(g(x))g''(x)
- b) $f''(g(x))[g'(x)]^2$
- c) $f''(g(x))[g'(x)]^2 + f'(g(x))g''(x)$
- d) f''(g(x))g''(x)
- e) None of these
- 1.9 Which of the following functions is odd:
- a) $f(x) = x^2$
- b) $f(x) = \sin x$
- c) $f(x) = \cos x$
- d) $f(x) = e^x$
- e) None of these

1.10 Which of the following expressions is logically equivalent to $p \to q$? [1]

- a) $p \lor q$
- b) $\neg q \rightarrow \neg p$
- c) $\neg q \rightarrow p$
- d) $\neg p \land q$
- e) None of these

Question 2 [5 marks]

In the table below, Column A contains logical formulas and column B contains descriptions of the formulas. Match each formula in Column A to its description in Column B. [5]

Column A	Column B
(i) $(p \land \neg q) \lor (q \land \neg p)$	(a) A tautology
(ii) $p \lor \neg p$	(b) Logically equivalent to $\neg p \land q$
(iii) $q \to p$	(c) A contradiction
(iv) $p \land \neg p$	(d) The converse of $p \to q$
$(\mathbf{v}) \neg p \leftrightarrow \neg q$	(e) Logically equivalent to $(p \leftrightarrow q)$

Answers

Column A	Column B
(i)	
(ii)	
(iii)	
(iv)	
(v)	

Question 3 [5 marks]

a) State the Intermediate Value Theorem.

b) Use the Intermediate Value Theorem to show that the function $f(x) = 2x^5 - 3x^3 + x - 1$ has a root in the interval (1, 2). [3]

[2]

Question 4 [6 marks]

a) Solve for x if:
$$\frac{2x-2}{x-1} > -\frac{x+5}{x-1}$$
 [2]

b) Sketch the graph of $\sec x$ for $x \in \left[-\frac{3\pi}{2}, \frac{3\pi}{2}\right]$. Label all intercepts with axes as well as any asymptotes. [2]

c) Let z = 6 + 3i and w = 1 - i. Find $\frac{z}{w}$ and write your answer in the form a + bi. [2]

Question 5 [4 marks]

Determine (without using L'Hospital's Rule):

a)
$$\lim_{x \to 3} \frac{x^4 - 81}{x - 3}$$
 [2]

b)
$$\lim_{x \to \infty} \frac{1 - e^x}{1 + 2e^x}$$
[2]

$\underline{\text{Question } 6} \ [5 \text{ marks}]$

Evaluate the following limits (use L'Hospital's Rule when needed):

$\sin \pi x$	[0]
a) $\lim_{x \to -4} \frac{1}{x^2 - 16}$	[2]

b) $\lim_{x \to \infty} [e^x + x]^{\frac{1}{x}}$

[3]

Question 7 [8 marks]

Given the following case-defined function:

$$f(x) = \begin{cases} (x+1)^2 - 1 & \text{if } -3 \le x < 1\\ 2^x + 1 & \text{if } 1 < x < 3\\ -x + 12 & \text{if } -3 \ge -x \ge -12 \end{cases}$$

a) Sketch the graph of f(x).

Use the graph to answer the following limit questions:

b) Determine $\lim f(x)$). [1	.]
$x \rightarrow 1^{-}$	-	-

- c) Determine $\lim_{x \to 1^+} f(x)$. [1]
- d) Determine $\lim_{x \to 1} f(x)$. [1]
- e) Determine f(1).

f) Is the case defined function continuous at x = 1? Motivate your answer. [1]

[3]

$\underline{\text{Question 8}} [7 \text{ marks}]$

Differentiate the following functions:

a)
$$f(x) = \tan x + x^2 \operatorname{csch}(x)$$

b)
$$xy^2 + \sqrt{xy} = 2$$

[3]

c)
$$y = \frac{\cos^2 3x}{1 + 2e^x}$$

Question 9 [6 marks]

Use the result $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$ to prove the following results: a) $\lim_{\theta \to 0} \frac{\cos \theta - 1}{\theta} = 0$ [3]

b) $\frac{d}{dx}(\sin x) = \cos x$, using the definition of the derivative of the function. [3]

Question 10 [5 marks]

a) Find a counter example of the statement: "The product of any two irrational numbers is irrational". [2]

b) Use proof by contradiction to prove the following: "Let $n \in \mathbb{Z}$, if n^2 is even, then n is even."

Question 11 [2 marks]

State the Fundamental Theorem of Calculus (Part 1 and 2).

[2]

Question 12 [7 marks]

Evaluate the following integrals

a)
$$\int_0^{\frac{\pi}{4}} \sec^2 \theta \ d\theta$$

[2]

b)
$$\int_{1}^{4} \sqrt{t}(1+t) dt$$

[2]

c) $\int e^x \cos(e^x) dx$