APPLIED MATHEMATICS

Introduction to Dynamics
APM01B1/APM1B10
November Examination: 23/11/2017

Duration: 2 hours
Marks: 50
Assessor: Dr. GJ Kemp
Moderator: Dr. JSC Prentice

Instructions:

1. Symbols have their usual meaning.
2. Physical quantities are in SI units and angles are in radians.
3. All calculations must be shown.
4. Pocket calculators are permitted.
5. Work to a precision of at least three decimal places.

Question 1 (12 marks)
(a) Show that for uniform circular motion

$$
r=\rho
$$

where r is the radius of the motion, ρ is the radius of curvature in the $(\hat{\tau}, \hat{n})$ coordinate system.
(b) The equation of the trajectory of the particle is given by

$$
\boldsymbol{r}(t)=(-2+2 \sin t) \hat{x}+(-1+2 \cos (2 t)) \hat{y} \equiv(-2+2 \sin t,-1+2 \cos (2 t))
$$

For $t=\frac{1}{2}$, find
i) \boldsymbol{v} and \boldsymbol{a}
ii) $\hat{\tau}$ and \hat{n}.
iii) the tangential and normal components of \boldsymbol{a}
iv) the radius of curvature and the centre of curvature $\boldsymbol{C}=\boldsymbol{r}+\rho \hat{n}$.

Solution:

(a) First note that, for uniform circular motion,

$$
\hat{r}=-\hat{n}, \quad \hat{\theta}=\hat{\tau}
$$

Then from the velocity vector,

$$
r \dot{\theta} \hat{\theta}=r \dot{\theta} \hat{\tau}=v \hat{\tau}, \quad \Rightarrow \quad v=r \dot{\theta} .
$$

Then, matching the components of the acceleration, we find

$$
\begin{aligned}
+r \dot{\theta}^{2} \hat{n} & =\frac{v^{2}}{\rho} \hat{n} \\
r \dot{\theta}^{2} & =\frac{r^{2} \dot{\theta}^{2}}{\rho} \\
\rho & =r .
\end{aligned}
$$

(b) i)

$$
\begin{aligned}
& \boldsymbol{v}=(1.75517,-3.36588) \\
& \boldsymbol{a}=(-0.958851,-4.32242)
\end{aligned}
$$

ii)

$$
\begin{aligned}
\hat{\tau} & =(0.46237,-0.886687) \\
\hat{n} & =(0.886687,0.46237)
\end{aligned}
$$

iii)

$$
a_{\tau}=3.38929, \quad a_{n}=-2.84876
$$

iv)

$$
\rho=-5.05827, \quad C=(-5.52625,-2.25819) .
$$

Question 2 (7 marks)
A particle of mass 2 kg experiences a time-dependent force $\boldsymbol{F}=\left(3 t^{2}, 2 t-1\right)$ for a time period $T>0$. The initial velocity of the particle is $\boldsymbol{v}_{i}=(1,0)$. If the final velocity \boldsymbol{v}_{f} is horizontal, determine the final speed of the particle. Assume $t_{i}=0$.

Solution: Impulse equation

$$
\boldsymbol{I}=\left(T^{3}, T^{2}-T\right)=2\left(v_{f}, 0\right)-2(1,0)
$$

One then finds the two equations

$$
\begin{aligned}
T^{3} & =2 v_{f}-2 \\
T^{2}-T & =0 .
\end{aligned}
$$

Solving, we find $T=0$, or $T=1$. For $T=1$, then $v_{f}=3 / 2$.

Question 3 (11 marks)
A perturbed ideal gas is described by the equation of state

$$
\psi(x, y, z)=\alpha \frac{x}{y}+3 z^{2}
$$

where α is a constant. The variables x, y, z and ψ represent the temperature, volume, mass and pressure of the gas respectively.
Calculate the directional derivative $\frac{\partial \psi}{\partial s}$ in the direction of $\hat{x}+\hat{y}+\hat{z}$ at the point $P=(1,1,1)$.
(a) Use the parameterization $\boldsymbol{r}=\boldsymbol{r}_{0}+s \hat{s}$
(b) Use the formula $\nabla \psi \cdot \hat{s}$.

Solution:

(a) Calculate the unit vector

$$
\hat{s}=\frac{1}{\sqrt{3}}(\hat{x}+\hat{y}+\hat{z})
$$

Then the straight line is parameterized by

$$
\boldsymbol{r}=\boldsymbol{r}_{0}+s \hat{s}
$$

where we choose $\boldsymbol{r}_{0}=\overline{O P}=(1,1,1)$. This gives

$$
\begin{aligned}
& x(s)=1+\frac{s}{\sqrt{3}} \\
& y(s)=1+\frac{s}{\sqrt{3}} \\
& z(s)=1+\frac{s}{\sqrt{3}}
\end{aligned}
$$

Substituting, we find

$$
\psi(s)=\alpha+3\left(1+\frac{s}{\sqrt{3}}\right)^{2}
$$

Then

$$
\left.\frac{\partial \psi}{\partial s}\right|_{s=0}=\left.\frac{\partial \psi}{\partial s}\right|_{P=(1,1,1)}=\frac{6}{\sqrt{3}} .
$$

(b) Calculate $\nabla \psi \cdot \hat{s}$.

$$
\begin{aligned}
\nabla \psi & =\left(\alpha \frac{1}{y},-\alpha \frac{x}{y^{2}}, 6 z\right) \\
\nabla \psi \cdot \hat{s} & =\frac{1}{\sqrt{3}}\left(\alpha \frac{1}{y}-\alpha \frac{x}{y^{2}}+6 z\right) \\
\left.\nabla \psi \cdot \hat{s}\right|_{P=(1,1,1)} & =\frac{6}{\sqrt{3}} .
\end{aligned}
$$

Question 4 (12 marks)
Calculate the $\int_{\Gamma} \boldsymbol{F} \cdot d \boldsymbol{r}$, with $\boldsymbol{F}=\left(y+2 z, x-2 y, x^{2} y\right)$, and where the path Γ is defined by

$$
\begin{aligned}
& y=x^{2}+1 \\
& z=4 x+y
\end{aligned}
$$

In the integral, the lower limit is $(0,1,1)$, and the upper limit is $(1,2,6)$.

Solution: The parametric equations for the path Γ are

$$
\begin{aligned}
& x(s)=s \\
& y(s)=s^{2}+1 \\
& z(s)=s^{2}+4 s+1 .
\end{aligned}
$$

The lower bound $(0,1,1)$ corresponds to $s=0$, the upper bound $(1,2,6)$ corresponds to $s=1$. The integral becomes

$$
\int_{\Gamma} \boldsymbol{F} \cdot d \boldsymbol{r}=\int_{0}^{1} \boldsymbol{F}(s) \cdot \frac{d \boldsymbol{r}}{d s} d s
$$

where

$$
\begin{aligned}
\boldsymbol{r} & =\left(s, s^{2}+1, s^{2}+4 s+1\right) \\
\frac{d \boldsymbol{r}}{d s} & =\left(1,2 s^{2}, 2 s+4\right) \\
\boldsymbol{F}(s) & =\left(3 s^{2}+8 s+3,-s^{2}+s-2, s^{4}+s^{2}\right)
\end{aligned}
$$

Putting everything together

$$
\int_{\Gamma} \boldsymbol{F} \cdot d \boldsymbol{r}=\int_{0}^{1}\left[2 s^{5}+4 s^{4}-2 s^{3}+9 s^{2}+4 s+3\right] d s=\frac{259}{30} .
$$

Question 5 (8 marks)
(a) Does the Principle of Work and Energy hold for all forces, or only for conservative forces?
(b) The coefficient of friction between the tyres of a braking car and the road is $\mu=0.5$. The car travels down a plane with an incline of $\theta=15^{\circ}$ with respect to the horizontal. Use the Principle of Work and Energy to calculate the distance travelled by the car after it comes to a complete stop. Assume the car has an initial speed of $10 \mathrm{~m} / \mathrm{s}$.

Solution:

(a) Applies to all forces
(b) Orientate the axes in your reference frame such that the x-axis is parallel to the incline, and that +x direction is in the direction of the car's motion. Then

$$
d \boldsymbol{r}=(d x, 0,0)=d x \hat{x} .
$$

We only need the forces in the x-direction. The friction force is directed towards the $-x$ direction, while the x-component of the gravitational force is pointing in the $+x$ direction:

$$
F_{x}=-m g \cos (\theta) \mu+m g \sin (\theta) .
$$

Calculating the work done

$$
\begin{aligned}
W=\int \boldsymbol{F} \cdot d \boldsymbol{r} & =\int_{0}^{d}(-m g \cos (\theta) \mu+m g \sin (\theta)) d x \\
& =(-m g \cos (\theta) \mu+m g \sin (\theta)) d \\
& =m g d(-\cos (\theta) \mu+\sin (\theta)) .
\end{aligned}
$$

which is equal to the change in kinetic energy

$$
\Delta T=0-\frac{1}{2} m v_{i}^{2}=-\frac{1}{2} m v_{i}^{2} .
$$

Using the work energy principle:

$$
\begin{aligned}
m g d(-\cos (\theta) \mu+\sin (\theta)) & =-\frac{1}{2} m v_{i}^{2} \\
d & =-\frac{v_{i}^{2}}{2 g(-\cos (\theta) \mu+\sin (\theta))} \\
& =22.762 \mathrm{~m} .
\end{aligned}
$$

Information

$$
\begin{aligned}
\boldsymbol{r} & =(x, y)=(r \cos \theta, r \sin \theta) . \\
\boldsymbol{v} & =v_{r} \hat{r}+v_{\theta} \hat{\theta}=v_{\tau} \hat{\tau}+v_{n} \hat{n} \\
& =\dot{r} \hat{r}+r \dot{\theta} \hat{\theta}=v \hat{\tau} . \\
\boldsymbol{a} & =a_{r} \hat{r}+a_{\theta} \hat{\theta}=a_{\tau} \hat{\tau}+a_{n} \hat{n} \\
& =\left(\ddot{r}-r \dot{\theta}^{2}\right) \hat{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \hat{\theta}=\dot{v} \hat{\tau}+\left(\frac{v^{2}}{\rho}\right) \hat{n} . \\
v & =|\boldsymbol{v}| . \\
\hat{r} & =(\cos \theta, \sin \theta), \quad \hat{\theta}=(-\sin \theta, \cos \theta) \\
\hat{\tau} & =(\cos \psi, \sin \psi), \quad \hat{n}=(-\sin \psi, \cos \psi)
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{I} & =\int_{t_{i}}^{t_{f}} \boldsymbol{F} d t=m \boldsymbol{v}_{f}-m \boldsymbol{v}_{i} \\
d \boldsymbol{r} & =d x \hat{x}+d y \hat{y}+d z \hat{z} \\
\nabla & =\hat{x} \frac{\partial}{\partial x}+\hat{y} \frac{\partial}{\partial y}+\hat{z} \frac{\partial}{\partial z} \\
W & =\int_{\Gamma} \boldsymbol{F} \cdot d \boldsymbol{r}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}
\end{aligned}
$$

