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Instructions:

1. Symbols have their usual meaning.

2. Physical quantities are in SI units and angles are in radians.

3. All calculations must be shown.

4. Pocket calculators are permitted.

5. Work to a precision of at least three decimal places.
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Question 1 (12 marks)

(a) Show that for uniform circular motion

r = ρ

where r is the radius of the motion, ρ is the radius of curvature in the (τ̂ , n̂)
coordinate system.

(b) The equation of the trajectory of the particle is given by

r (t) = (−2 + 2 sin t) x̂+ (−1 + 2 cos (2t)) ŷ ≡ (−2 + 2 sin t,−1 + 2 cos (2t))

For t = 1
2
, find

i) v and a

ii) τ̂ and n̂.

iii) the tangential and normal components of a

iv) the radius of curvature and the centre of curvature C = r + ρn̂.

Solution:

(a) First note that, for uniform circular motion,

r̂ = −n̂, θ̂ = τ̂

Then from the velocity vector,

rθ̇θ̂ = rθ̇τ̂ = vτ̂ , ⇒ v = rθ̇.

Then, matching the components of the acceleration, we find

+rθ̇2n̂ =
v2

ρ
n̂

rθ̇2 =
r2θ̇2

ρ
ρ = r.

(b) i)

v = (1.75517,−3.36588)

a = (−0.958851,−4.32242)

ii)

τ̂ = (0.46237,−0.886687)

n̂ = (0.886687, 0.46237) .

iii)
aτ = 3.38929, an = −2.84876

iv)
ρ = −5.05827, C = (−5.52625,−2.25819) .
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Question 2 (7 marks)
A particle of mass 2kg experiences a time-dependent force F = (3t2, 2t− 1) for a
time period T > 0. The initial velocity of the particle is vi = (1, 0). If the final
velocity vf is horizontal, determine the final speed of the particle. Assume ti = 0.

Solution: Impulse equation

I =
(
T 3, T 2 − T

)
= 2 (vf , 0)− 2 (1, 0)

One then finds the two equations

T 3 = 2vf − 2

T 2 − T = 0.

Solving, we find T = 0, or T = 1. For T = 1, then vf = 3/2.

Question 3 (11 marks)
A perturbed ideal gas is described by the equation of state

ψ (x, y, z) = α
x

y
+ 3z2,

where α is a constant. The variables x, y, z and ψ represent the temperature, volume,
mass and pressure of the gas respectively.

Calculate the directional derivative ∂ψ
∂s

in the direction of x̂ + ŷ + ẑ at the point
P = (1, 1, 1).

(a) Use the parameterization r = r0 + sŝ

(b) Use the formula ∇ψ · ŝ.

Solution:

(a) Calculate the unit vector

ŝ =
1√
3

(x̂+ ŷ + ẑ)

Then the straight line is parameterized by

r = r0 + sŝ

where we choose r0 = OP = (1, 1, 1). This gives

x (s) = 1 +
s√
3

y (s) = 1 +
s√
3

z (s) = 1 +
s√
3
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Substituting, we find

ψ (s) = α + 3

(
1 +

s√
3

)2

.

Then
∂ψ

∂s

∣∣∣∣
s=0

=
∂ψ

∂s

∣∣∣∣
P=(1,1,1)

=
6√
3
.

(b) Calculate ∇ψ · ŝ.

∇ψ =

(
α

1

y
,−α x

y2
, 6z

)
∇ψ · ŝ =

1√
3

(
α

1

y
− α x

y2
+ 6z

)
∇ψ · ŝ

∣∣∣
P=(1,1,1)

=
6√
3
.

Question 4 (12 marks)
Calculate the

∫
Γ
F · dr, with F = (y + 2z, x− 2y, x2y), and where the path Γ is

defined by

y = x2 + 1

z = 4x+ y.

In the integral, the lower limit is (0, 1, 1), and the upper limit is (1, 2, 6).

Solution: The parametric equations for the path Γ are

x (s) = s

y (s) = s2 + 1

z (s) = s2 + 4s+ 1.

The lower bound (0, 1, 1) corresponds to s = 0, the upper bound (1, 2, 6) corre-
sponds to s = 1. The integral becomes∫

Γ

F · dr =

∫ 1

0

F (s) · dr
ds

ds.

where

r =
(
s, s2 + 1, s2 + 4s+ 1

)
dr

ds
=

(
1, 2s2, 2s+ 4

)
F (s) =

(
3s2 + 8s+ 3,−s2 + s− 2, s4 + s2

)
.
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Putting everything together∫
Γ

F · dr =

∫ 1

0

[
2s5 + 4s4 − 2s3 + 9s2 + 4s+ 3

]
ds =

259

30
.

Question 5 (8 marks)

(a) Does the Principle of Work and Energy hold for all forces, or only for conservative
forces?

(b) The coefficient of friction between the tyres of a braking car and the road is
µ = 0.5. The car travels down a plane with an incline of θ = 15o with respect to
the horizontal. Use the Principle of Work and Energy to calculate the distance
travelled by the car after it comes to a complete stop. Assume the car has an
initial speed of 10 m/s.

Solution:

(a) Applies to all forces

(b) Orientate the axes in your reference frame such that the x-axis is parallel to
the incline, and that + x direction is in the direction of the car’s motion.
Then

dr = (dx, 0, 0) = dxx̂.

We only need the forces in the x-direction. The friction force is directed
towards the − x direction, while the x-component of the gravitational force
is pointing in the + x direction:

Fx = −mg cos (θ)µ+mg sin (θ) .

Calculating the work done

W =

∫
F · dr =

∫ d

0

(−mg cos (θ)µ+mg sin (θ)) dx

= (−mg cos (θ)µ+mg sin (θ)) d

= mgd (− cos (θ)µ+ sin (θ)) .

which is equal to the change in kinetic energy

∆T = 0− 1

2
mv2

i = −1

2
mv2

i .

Using the work energy principle:

mgd (− cos (θ)µ+ sin (θ)) = −1

2
mv2

i

d = − v2
i

2g (− cos (θ)µ+ sin (θ))
= 22.762 m.
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Information

r = (x, y) = (r cos θ, r sin θ) .

v = vrr̂ + vθθ̂ = vτ τ̂ + vnn̂

= ṙr̂ + rθ̇θ̂ = vτ̂ .

a = arr̂ + aθθ̂ = aτ τ̂ + ann̂

=
(
r̈ − rθ̇2

)
r̂ +

(
rθ̈ + 2ṙθ̇

)
θ̂ = v̇τ̂ +

(
v2

ρ

)
n̂.

v = |v| .
r̂ = (cos θ, sin θ) , θ̂ = (− sin θ, cos θ)

τ̂ = (cosψ, sinψ) , n̂ = (− sinψ, cosψ)

I =

∫ tf

ti

F dt = mvf −mvi

dr = dxx̂+ dyŷ + dzẑ

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

W =

∫
Γ

F · dr =
1

2
mv2

f −
1

2
mv2

i


