

JUNE EXAMINATION

PROGRAM : HUMAN MOVEMENT STUDIES

MODULE NAME : KINESIOLOGY

MODULE CODE : KIN01A1 / MBK1A01 / MBK1A02 / BIK01Y1 (FIRST

SEMESTER)

DATE : 12 JUNE 2017

DURATION : TWO (2) HOURS

TOTAL MARKS : 100 MARKS

EXAMINER: MRS FERREIRA

MODERATOR : PROF LATEGAN

NUMBER OF PAGES : NINE (9) PAGES

INSTRUCTIONS TO CANDIDATES:

PLEASE MAKE SURE THAT YOU HAVE THE COMPLETE PAPER AND PLEASE ANSWER ALL THE QUESTIONS.

SECTION A: SKELETAL & MUSCULAR SYSTEMS

SECTION B: BIOMECHANICS

SECTION A: SKELETAL & MUSCULAR SYSTEM (50 MARKS)

QUESTION 1 [3]

Explain the two reference positions of the body and how they differ from each other.

QUESTION 2: Provide the correct answer

[10]

- 1.1 The term VOLAR refers:
 - a) The left side of the body
 - b) The top of the body
 - c) The palm of the hand
- 1.2 CONTRALATERAL is a term used to refer to:
 - a) Opposite side of the body
 - b) Same side of the body
 - c) One side of the body
- 1.3 Identify the plane of motion during SHOULDER EXTENSION.
 - a) Frontal plane
 - b) Sagittal plane
 - c) Transverse plane
- 1.4 Identify the plane of motion through which ANKLE ABDUCTION takes place.
 - a) Frontal plane
 - b) Sagittal plane
 - c) Transverse plane
- 1.5 Identify the axis of rotation around which KNEE FLEXION takes place.
 - a) Vertical axis
 - b) Anterior-posterior axis
 - c) Frontal/lateral axis
- 1.6 Identify the axis of rotation around which GLENO-HUMERAL ADDUCTION takes place.
 - a) Vertical axis
 - b) Anterior-posterior axis
 - c) Frontal/lateral axis
- 1.7 Straightening the elbow may be described as:
 - a) Elbow flexion
 - b) Elbow supination
 - c) Elbow extension
- 1.8 The WRIST (RADIOCARPAL) joint can be classified as a:
 - a) Condyloid joint
 - b) Pivot joint
 - c) Hinge joint
- 1.9 The ATLANTOAXIAL JOINT may be classified as a:
 - a) Plane joint
 - b) Pivot joint
 - c) Saddle joint

1.10 The thoracic spine consists of how many vertebrae?

- a) 7
- b) 12
- c) 5

QUESTION 3: Label the following diagram for A-E

[5]

QUESTION 4 [8]

Name and explain four (4) different types of muscle contractions.

QUESTION 5: Please label the following bone markings A-F

QUESTION 6 [4]

Describe the origin and insertion of the following muscles:

- a. Subscapularis
- b. Tensor Fascia Latae

QUESTION 7 [4]

List four (4) muscles that do knee extension.

[6]

QUESTION 8: Identify the following ligaments (A-D) found at the ankle joint [4]

QUESTION 9 [4]

Give the function of the following muscles:

- a) Semitendinosus
- b) Rectus Abdominis
- c) Supraspinatus
- d) Tibialis Anterior

QUESTION 10 [2]

Which four (4) movements take place in the lumbar spine?

SECTION A TOTAL: 50 MARKS

SECTION B: BIOMECHANICS (50 MARKS)

QUESTION 1 [4]

Explain the following key concepts found in Biomechanics: statics, dynamics, kinetics & kinematics.

QUESTION 2 [15]

Analyse the **Push-up** by means of an anatomical analysis. Use the table format below to describe the movement in terms of agonistic muscles for the following joints: glenohumeral joint and elbow joint.

Phase:	Joint:	Movement:	Agonistic muscles:	Type of
Up /	GHJ			contraction:
Down	EJ			Con / Ecc

QUESTION 3 [4]

What is the main goal of:

- 3.1 Golf put
- 3.2 Javelin throw
- 3.3 50m freestyle swimming
- 3.4 Ice skating

QUESTION 4 [4]

Name the following postural deviations:

4.1 _____ Genu

4.2

Genu _____

4.3

Thoracic _____

4.4

Lumbar _____

QUESTION 5 [2]

Explain the following postural deviations:

- 5.1 S-shaped Scoliosis
- 5.2 Scheuermann's disease

QUESTION 6 [2]

What are the possible consequences/injuries for the following faulty postures (name only one for each question)?

- 6.1 Ankle/foot over-pronation
- 6.2 Duck Feet

QUESTION 7 [2]

Determine the kinetic energy of an object weighing 500kg and travelling at 65km/h.

QUESTION 8 [2]

Calculate the distance in metres that an athlete covers if he runs for 60 minutes at an average velocity of 16km/h.

QUESTION 9 [2]

Determine the height from which a ball was dropped if it took 15 seconds to hit the ground (you may ignore the effects of air resistance).

QUESTION 10 [4]

Determine the <u>extra</u> amount of work generated by a person with a height of 1.65m and weighing 74kg, lifting 20 boxes weighing 20kg each from the ground to a shelf 1.3m above the ground.

QUESTION 11 [2]

Calculate the force needed to generate 275Nm of torque using a lever 60cm in length.

QUESTION 12 [3]

A shot put thrower delivers the shot put at an angle of 40° at a velocity of 19m/s. Calculate the vertical velocity of the shot put.

QUESTION 13 [4]

Calculate the power generated by a weight lifter who performs 10 repetitions of the shoulder press exercise with a weight of 85kg in 25 seconds; the weight is lifted 45cm from the starting position.

SECTION B TOTAL: 50

SECTION A & B TOTAL: 100

Formulas

v = s/t velocity = displacement / time

a = (v-u)/t acceleration = (final vel. –initial vel.)/time

 $s = ut + \frac{1}{2}at^2$ v = u + at

 $v^2 = u^2 + 2as$

Where: u = initial velocity, v = final velocity, t = time and a = acceleration

F = ma Force = mass x acceleration

Ft = m(v - u) Impulse = mass (final velocity – initial velocity)

W = Fs Work = Force x distance

P = W/t Power = Work / time

PE = mgh Potential Energy = mass x gravity x height

 $KE = \frac{1}{2} mv^2$ Kinetic Energy = $\frac{1}{2} x$ mass x (velocity)²

M = mv Momentum = mass x velocity

E x EA = R x RA Effort x Effort arm = Resistance x Resistance arm

MA = R/E Mechanical Advantage = Resistance / Effort

 $T = F \times \bot d$ Torque = Force x perpendicular distance