

JUNE EXAMINATION

PROGRAM	HUMAN MOVEMENT STUDIES
MODULE NAME	KINESIOLOGY
MODULE CODE	KIN01A1 / MBK1A01 / MBK1A02 / BIK01Y1 (FIRST SEMESTER)
DATE	12 JUNE 2017
DURATION	TWO (2) HOURS
TOTAL MARKS	100 MARKS
EXAMINER	MRS FERREIRA
MODERATOR	PROF LATEGAN
NUMBER OF PAGES	NINE (9) PAGES
INSTRUCTIONS TO CANDIDATES:	
PLEASE MAKE SURE AND PLEASE ANSWE SECTION A: SKELETAL SECTION B: BIOMEC	HAT YOU HAVE THE COMPLETE PAPER ALL THE QUESTIONS. \& MUSCULAR SYSTEMS NICS

SECTION A: SKELETAL \& MUSCULAR SYSTEM (50 MARKS)

QUESTION 1

[3]
Explain the two reference positions of the body and how they differ from each other.

QUESTION 2: Provide the correct answer

1.1 The term VOLAR refers:
a) The left side of the body
b) The top of the body
c) The palm of the hand
1.2 CONTRALATERAL is a term used to refer to:
a) Opposite side of the body
b) Same side of the body
c) One side of the body
1.3 Identify the plane of motion during SHOULDER EXTENSION.
a) Frontal plane
b) Sagittal plane
c) Transverse plane
1.4 Identify the plane of motion through which ANKLE ABDUCTION takes place.
a) Frontal plane
b) Sagittal plane
c) Transverse plane
1.5 Identify the axis of rotation around which KNEE FLEXION takes place.
a) Vertical axis
b) Anterior-posterior axis
c) Frontal/lateral axis
1.6 Identify the axis of rotation around which GLENO-HUMERAL ADDUCTION takes place.
a) Vertical axis
b) Anterior-posterior axis
c) Frontal/lateral axis
1.7 Straightening the elbow may be described as:
a) Elbow flexion
b) Elbow supination
c) Elbow extension
1.8 The WRIST (RADIOCARPAL) joint can be classified as a:
a) Condyloid joint
b) Pivot joint
c) Hinge joint
1.9 The ATLANTOAXIAL JOINT may be classified as a:
a) Plane joint
b) Pivot joint
c) Saddle joint
1.10 The thoracic spine consists of how many vertebrae?
a) 7
b) 12
c) 5

QUESTION 3: Label the following diagram for A-E

QUESTION 4

Name and explain four (4) different types of muscle contractions.

Figure 6-8. The right humerus (a) anterior view and (b) posterior view.

QUESTION 6

Describe the origin and insertion of the following muscles:
a. Subscapularis
b. Tensor Fascia Latae

QUESTION 7

List four (4) muscles that do knee extension.

QUESTION 8: Identify the following ligaments (A-D) found at the ankle joint

QUESTION 9

Give the function of the following muscles:
a) Semitendinosus
b) Rectus Abdominis
c) Supraspinatus
d) Tibialis Anterior

QUESTION 10

Which four (4) movements take place in the lumbar spine?

SECTION B: BIOMECHANICS (50 MARKS)

QUESTION 1

Explain the following key concepts found in Biomechanics: statics, dynamics, kinetics \& kinematics.

QUESTION 2

Analyse the Push-up by means of an anatomical analysis. Use the table format below to describe the movement in terms of agonistic muscles for the following joints: glenohumeral joint and elbow joint.

Phase:	Joint:	Movement:	Agonistic muscles:	Type of
Up /	GHJ			contraction:
Down	EJ			Con / Ecc

QUESTION 3

What is the main goal of:
3.1 Golf put
3.2 Javelin throw
3.350 m freestyle swimming
3.4 Ice skating

QUESTION 4

Name the following postural deviations:
4.1

Genu \qquad

QUESTION 5

Explain the following postural deviations:
5.1 S-shaped Scoliosis
5.2 Scheuermann's disease

QUESTION 6

What are the possible consequences/injuries for the following faulty postures (name only one for each question)?
6.1 Ankle/foot over-pronation
6.2 Duck Feet

QUESTION 7

Determine the kinetic energy of an object weighing 500 kg and travelling at $65 \mathrm{~km} / \mathrm{h}$.

QUESTION 8

Calculate the distance in metres that an athlete covers if he runs for 60 minutes at an average velocity of $16 \mathrm{~km} / \mathrm{h}$.

QUESTION 9

Determine the height from which a ball was dropped if it took 15 seconds to hit the ground (you may ignore the effects of air resistance).

QUESTION 10

Determine the extra amount of work generated by a person with a height of 1.65 m and weighing 74 kg , lifting 20 boxes weighing 20 kg each from the ground to a shelf 1.3 m above the ground.

QUESTION 11

Calculate the force needed to generate 275 Nm of torque using a lever 60 cm in length.

QUESTION 12

A shot put thrower delivers the shot put at an angle of 40° at a velocity of $19 \mathrm{~m} / \mathrm{s}$. Calculate the vertical velocity of the shot put.

QUESTION 13

Calculate the power generated by a weight lifter who performs 10 repetitions of the shoulder press exercise with a weight of 85 kg in 25 seconds; the weight is lifted 45 cm from the starting position.

SECTION B TOTAL: 50

SECTION A \& B TOTAL: 100

Formulas

$\mathrm{v}=\mathrm{s} / \mathrm{t} \quad$ velocity $=$ displacement $/$ time
$\mathrm{a}=(\mathrm{v}-\mathrm{u}) / \mathrm{t} \quad$ acceleration $=($ final vel. -initial vel.)/time
$s=u t+1 / 2 a t^{2}$
$\mathrm{v}=\mathrm{u}+\mathrm{at}$
$v^{2}=u^{2}+2$ as
Where: $\mathrm{u}=$ initial velocity, $\mathrm{v}=$ final velocity, $\mathrm{t}=$ time and $\mathrm{a}=$ acceleration
$\begin{array}{ll}\mathrm{F}=\mathrm{ma} & \text { Force }=\text { mass } \times \text { acceleration } \\ \mathrm{Ft}=\mathrm{m}(v-u) & \text { Impulse }=\text { mass (final velocity }- \text { initial velocity })\end{array}$
$\mathrm{W}=\mathrm{Fs} \quad$ Work $=$ Force x distance
$\mathrm{P}=\mathrm{W} / \mathrm{t} \quad$ Power $=$ Work $/$ time
$P E=m g h \quad$ Potential Energy $=$ mass x gravity x height
$K E=1 / 2 m v^{2} \quad$ Kinetic Energy $=1 / 2 \times$ mass $\times(\text { velocity })^{2}$
$M=m v \quad$ Momentum $=$ mass \times velocity
$E \times E A=R \times R A$ Effort \times Effort arm $=$ Resistance \times Resistance arm
$M A=R / E \quad$ Mechanical Advantage $=$ Resistance $/$ Effort $\mathrm{T}=\mathrm{Fx} \perp_{\mathrm{d}} \quad$ Torque $=$ Force \times perpendicular distance

