

PROGRAM

: BACHELOR OF ENGINEERING TECHNOLOGY

SUBJECT

: SURVEYING B1

CODE

: SURCIB1

DATE

: SEMESTER-MAIN EXAMINATION

22 November 2017

(SECOND SESSION)

DURATION

: (Y-PAPER) 12:30-15:30

WEGHT

: 40:60

FULL MARKS

: 100

TOTAL MARKS

: 100

EXAMINER

: MR. A. VESSAL

SAPSE NO

MODERATOR

: MR. D. WILSON

FILE NO

NUMBER OF PAGES : 5 PAGES PLUS ANNEXURE

INSTRUCTIONS

: CALCULATORS ARE PERMITTED (ONLY ONE PER

STUDENT)

REQUIREMENTS

: GRAPH PAPERS, RULER

Surname	and	Initial
---------	-----	---------

Student #

INSTRUCTIONS TO STUDENTS:

- 1. ANSWER ALL QUESTIONS IN PEN NOT IN PENCIL
- 2. Show all your calculations to get a full mark
- 3. Return your test sheet with your answer sheet to the examiner

QUESTION 1

A falling gradient of 1/30 is to be connected to a rising gradient by means of a vertical parabolic curve. The stationing of PVI is 1+460.000 at the elevation 550 m A.M.S.L. The station of PVC (BVC) is at 1+335.00. The design speed for SSD is 100 Km/hr. Determine the reduced level and chainage (station) of PVT(6), and Lowest point on the curve(10). The table for Ks is in Annexure 1.

[16]

QUESTION 2

A group of students has done the resection survey on campus to establish a control point, P for future reference. The information are given in the following table and diagram. Determine the Coordinates of P .(Hint : You need to check if the Bearing QC and QP are the same to get a full mark).

	Eastings	Northings		
Α	2400	7900	APC=	130
В	2400	7710	BPC=	140
С	2200	7805	,	

QUESTION 3

A Horizontal curve is designed for a small highway for the following information .Determine the followings:

1) Coordinates of BC and EC (12).

2) Design this curve using the table to calculate all deflection angles, offset angles and chords for the 150 m change interval. (16)

Distance Peg D to BC		42.6794279578m		
chainage=			DI I I	988.5000
D	4515	8770		000.0000
PI	4295	8770		
E	4150	8610	Join Bearing PI-E	222.11.04

Chord #	Chainage	Curve Length	Chord Length	Offset angle (α = (90/ π/R) × ℓ)	Tangential angle	Tangential Chord=2Rsin(tangential angle)
BC(PC)						
1						
2						
EC(PT)						

QUESTION 4

- 1. Plot the pegs for grid interval of 40 m using scale of 1:1000 (see the annexure for the data). (12)
- 2. Draw the contours with contour interval of 2 m (12)

[24]

[TOTAL: 100]

```
Equations
```

L (curve length)= $R \times \pi \times \Delta /180$

 $T = R \tan (\Delta/2)$

External Distance = R (Sec $\Delta/2$ —1)

LC (Long Chord) or C = $2R \sin (\Delta/2)$

M= R-R× cos $\Delta/2$ = R (1-cos $\Delta/2$) Dc= (180×100)/ π/R=5729.578/R

 $\alpha = (90/ \pi/R) \times \ell$

for each (ℓ)

Chord = $2R \sin \alpha$

for each (ℓ)

 $a = (g_2 - g_1)/2L$

 $b=g_1$

c=elevation of PVC (BVC)

Ks (rate of Sag vertical curve) =L/A

A = ABS(G2-G1)

L= curve length

 $X_L = -b/2a$ or $X_L = K_S \times ABS(G1)$

Metric				US Customary			
Design speed (km/h)	Stopping sight distance (m)	Rate of curvatu		Design speed (mph)	Stopping sight distance (ft)	Rate of v curvatu Calculated	
20	20	2.1	3	15	80	9.4	10
30	35	5.1	6	20	115	16.5	17
40	50	8.5	9	25	155	25.5	26
50	65	12.2	13	30	200	36.4	37
60	85	17.3	18	35	250	49.0	49
70	105	22.6	23	40	305	63.4	64
80	130	29.4	30	45	360	78.1	79
90	160	37.6	38	50	425	95.7	96
100	185	44.6	45	55	495	114.9	115
110	220	54.4	55	60	570	135.7	136
120	250	62.8	63	65	645	156.5	157
130	285	72.7	73	70	730	180.3	181
				75	820	205.6	206
	()9			80	910	231.0	231

^a Rate of vertical curvature, K, is the length of curve (m) per percent algebraic difference intersecting grades (A). K = LIA

Exhibit 3-75. Design Controls for Sag Vertical Curves

ANNEXURE (Tacheometry)

Surname and Initial:

Student .No.:

Adjustment = Join Bearing- RO Observation TH = 1.7m IH = 1.60m Set up @ Peg D

Join Bearing Peg D to R.O. = 60.904880

Pts	۵	ш	Η	2	33	4
Elevation	1534.9	-2.246 1532.6544	1531.4331	1535.0098	1533.9447	
Δ elev.		-2.246	-3.467	0.1098	-0.955	
×	2896360	2896382.976	2896276.36	2896392.67 0.1098	2896396.47	2896335.18
>-	92219	92260.288	92234.4944	92183.7085	-11.3 36.47061 92207.7022	- 48.838 42.064 24.81544 92261.0641
Xp		22.976	- 15.494 83.64033	32.66677	36.47061	24.81544
λþ		47.25 41.288	15.494	-35.29	-11.3	42.064
НБ		47.25	85.063	48.09	38.18	48.838
RD BR		60.90488	259.1667 92.267 169.50492	89.75 312.78822	72.45 91.283 342.78822	86.9 120.53822
Obs.VA RD BR		92.6	92.267	89.75	91.283	86.9
Obs. HA		150.56666	259.1667	42.45	72.45	210.2
PT	Station	D to	Н	2	3	4

<