

PROGRAM

BACCALAUREUS TECHNOLOGIAE

CHEMICAL ENGINEERING

SUBJECT

PROCESS CONTROL IV

CODE

ICP411

DATE

: SUMMER EXAMINATION 2017

23 NOVEMBER 2017

DURATION

: (SESSION 1) 08:30 - 11:30

TOTAL MARKS

100

FULL MARKS

100

EXAMINER

DR T. MASHIFANA AND DR N MAZANA

MODERATOR

DR T.A. MAMVURA

NUMBER OF PAGES

FIVE (7) INCLUDING THIS COVER PAGE AND

ANNEXURES

INSTRUCTIONS

THIS IS A CLOSED BOOK EXAM

NON-PROGRAMMABLE CALCULATORS

PERMITTED (ONLY ONE PER CANDIDATE)

SHOW ALL UNITS IN CALCULATIONS!!!

ANSWER ALL THE QUESTIONS

NO ELECTRONIC DEVICES ALLOWED.

ICP411

QUESTION 1

A stream containing a solute (e.g. sugar) is diluted with water in a well stirred tank. The concentration in the tank is uniform and therefore the stream leaving the tank has the same concentration at any given time. A special balance on the solute gives:

$$q_i c_i - (q_w + q_i)c = \frac{d(Vc)}{dt} = V \frac{dc}{dt}$$

where c and ci are concentrations, mass/volume.

1.1. Determine the transfer function of this first-order system

(20)

1.2. Determine τp and Kp

(5)

[25]

QUESTION 2

A stirred tank heater is shown in Figure 2.1. The objectives is to maintain the level of the liquid in the tank at level H_s (desired height), to maintain the temperature inside the tank at T_s .(desired temperature) and to maintain the flow rate of the liquid into the tank at Fs (desired flow rate).

2.1. Use a feedback control configuration to design a control system to meet the specified objectives by following the control system design steps. (20)

Note: Do not use different diagrams; provide the design in one diagram

L = level

P = pressure

T = temperature

....

Figure 2.1 CSTR

ICP411

QUESTION 3:

3.1. Determine the Laplace transforms of the following functions from provided Laplace transform Tables:

a) f(t)=8 (3)

b) $f(t)=1-e^{-(-t/a)}$ (5)

c) $f(t) = \sin 3t$ (5)

3.2. Draw a generalized closed loop feedback system with a controller block, a final control element block, a process block and measurement block. The system is affected by an external disturbance. Derive the generalized feedback transfer function and state the characteristic equation. (12)

[25]

ICP3111

QUESTION 4

You are given a feedback system. The process with $G_p=1/(s^2+2s+2)$ is controlled by a PI controller i.e. $G_c=K_c$ (1+1/ τ_I). You are provided with the following additional information:

G f=1; G m=1; G d=
$$1/(3s+1)$$

Suggest the characteristic equation on the basis of the available block transfer functions. (5)

Check the stability of the system using the Routh _Hurwitz method when given that

$$K_c=100 \text{ and } \tau_I=0.1$$
 (25)

[30]

TOTAL MARKS = 100

FULL MARKS = 100

37.	35.	in in	3	29.	27.	25.	23.	21.	19.	17.	15.	13	Ξ	ع.	7.	Ċv	ω		
$f^{(n)}(t)$	f'(i)	$\int_0^t f(t-\tau)g(\tau)d\tau$	$\frac{1}{t}f(t)$	$e^{ij}f(i)$	$n_{c}(t)f(t-c)$	$u_c(t) = u(t-c)$ Heaviside Function	1"e", n=1.2,3,	e" sinh (br)	$e^{at}\sin(bt)$	sinh(ai)	$\sin(at+b)$	$\cos(at)$ - $at\sin(at)$	$\sin(at) - at\cos(at)$	rsin(at)	$\sin(at)$	4	f'', $n=1,2,3,$	_	$f(t) = \mathcal{L}^{-1}\{F(s)\}$
s"F(s)s'	sF(s)-f(0)	F(s)G(s)	$\int_{1}^{u} F(u) du$	F(s-c)	e '. F(s)	b °;	$\frac{(n-\pi)^{n+1}}{n!}$	$\frac{b}{(s-a)^2-b^2}$	$\frac{b}{\left(s-a\right)^{2}+b^{2}}$	2 - O - 2	$\frac{s\sin(b) + a\cos(b)}{s^2 + a^2}$	$\frac{s\left(s^2-\alpha^2\right)}{\left(s^2+\alpha^2\right)^2}$	$\frac{2a^3}{\left(s^2+a^2\right)^2}$	$\frac{2as}{\left(s^2+a^2\right)^2}$	$\frac{a}{s^2+a^2}$	$\frac{\sqrt{\pi}}{2s^{\frac{1}{2}}}$	n!	64 	Table of Laplace Transforms $F(s) = \mathcal{L}\{f(t)\} \qquad f(t) = \mathcal{L}\{f(t)\}$
") Z ("	36.	34.	32	30.	28.	26.	24.	23	20.	90	16.	.4	5.	<u>.</u>	00	6	4.	12	olace
$s''F(s)-s''^{-1}f(0)-s''^{-2}f'(0)\cdots-sf^{(n-2)}(0)-f^{(n-1)}(0)$	f"(1) .	f(t+T)=f(t)	$\int_0^r f(v)dv$	f''f(t), n=1,2,3	$u_{\epsilon}(t)g(t)$	$\delta(r-c)$ Dirac Delta Function	f(ct)	e' cosh (br)	$e^{\omega}\cos(bt)$	cosh(at)	$\cos(at+b)$	$\cos(at) + at\sin(at)$	$\sin(at) + at\cos(at)$	rcos(ar)	cos(at)	$I^{n,\frac{1}{2}}, n=1,2,3,$	t".p:-1	em	Transforms $f(t) = \mathcal{L}^{-1} \{ F(s) \}$
$(0)-f^{(n-1)}(0)$	$s^2 F(s) - sf(0) - f'(0)$	$\int_0^T e^{-f(t)} dt$	$\frac{F(s)}{s}$	$(-1)^n F^{(n)}(s)$	{(2+1)8}3.,a	•	$\frac{1}{c}F\left(\frac{s}{c}\right)$	$\frac{s-a}{\left(s-a\right)^2-b^2}$	$\frac{s-u}{\left(s-u\right)^2+b^2}$	S^2-Q^2	$\frac{s\cos(b) - a\sin(b)}{s^2 + a^2}$	$\frac{s\left(s^2+3a^2\right)}{\left(s^2+a^2\right)^2}$	$\frac{2as^2}{\left(s^2+a^2\right)^2}$	$\left(S^2 + \Omega^2\right)^2$	50 3 + A 2	$\frac{1\cdot 3\cdot 5\cdots (2n-1)\sqrt{\pi}}{2^{n}s^{n+\frac{1}{2}}}$	$\frac{\Gamma(p+1)}{s^{p+1}}$	<u>s-a</u>	$F(s) = \mathfrak{L}\{f(t)\}\$

- Table Notes

 1. This list is not a complete listing of Laplace transforms and only contains some of the more commonly used Laplace transforms and formulas.
- 2. Recall the definition of hyperbolic functions.

$$\cosh(t) = \frac{e' + e'}{2} \qquad \sinh(t) = \frac{e' - e'}{2}$$

- Be careful when using "normal" trig function vs. hyperbolic functions. The only
 difference in the formulas is the "+ a" for the "normal" trig functions becomes a
 "-a" for the hyperbolic functions!
- 4. Formula #4 uses the Gamma function which is defined as

$$\Gamma(t) = \int_0^x e^{-x} x^{t-1} dx$$

If n is a positive integer then, $|u = \{1+u\}, 1$

The Gamma function is an extension of the normal factorial function. Here are a couple of quick facts for the Gamma function

$$\Gamma(p+1) = \rho\Gamma(\rho)$$

$$\rho(p+1)(\rho+2)\cdots(p+n-1) = \frac{\Gamma(p+n)}{\Gamma(\rho)}$$

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

Table 8.1
Inverse Laplace Transforms Of Selected Expressions

Laplace transform: $f(s)$	Time function: $f(t)$
1. $\frac{1}{(s+a)(s+b)}$ 2. $\frac{1}{(s+a)(s+b)(s+c)}$ 3. $\frac{s+a}{(s+b)(s+c)}$ 4. $\frac{a}{(s+b)^{2}}$ 5. $\frac{a}{(s+b)^{3}}$ 6. $\frac{a}{(s+b)^{n+1}}$ 7. $\frac{1}{(s+b)^{n+1}}$	$\frac{e^{-at} - e^{-bt}}{b - a}$ $\frac{e^{-at}}{(b - a)(c - a)} + \frac{e^{-bt}}{(c - b)(a - b)} + \frac{e^{-ct}}{(a - c)(b - c)}$ $\frac{1}{c - b} [(a - b)e^{-bt} - (a - c)e^{-ct}]$ ate^{-bt} $\frac{a}{2} t^2 e^{-bt}$ $\frac{a}{n!} t^n e^{-bt}$
7. $\frac{1}{s(as+1)}$ 8. $\frac{1}{s(as+1)^2}$ 9. $\frac{\omega^2}{s(s^2+2\zeta\omega s+\omega^2)}$	$1 - e^{-t/a}$ $1 - \frac{a+t}{a}e^{-t/a}$ $1 + \frac{e^{-t/a}}{\sqrt{1-\zeta^2}}\sin(\omega\sqrt{1-\zeta^2}t - \phi)$ where $\cos \phi = -\zeta$
10. $\frac{s}{(1+as)(s^2+\omega^2)}$ 11. $\frac{s}{(s^2+\omega^2)^2}$ 12. $\frac{1}{(s+a)[(s+b)^2+\omega^2]}$	$-\frac{1}{1+a^2\omega^2}e^{-t/a} + \frac{1}{\sqrt{1+a^2\omega^2}}\cos(\omega t - \phi)$ where $\phi = \tan^{-1}a\omega$ $\frac{1}{2\omega}t\sin\omega t$ $\frac{e^{-at}}{(a-b)^2 + \omega^2} + \frac{e^{-bt}\sin(\omega t - \phi)}{\omega[(a-b)^2 + \omega^2]^{1/2}}$ where $\phi = \tan^{-1}\left(\frac{\omega}{a-b}\right)$

The Routh Array

Where: $A_1 = \frac{a_1 a_2 - a_0 a_3}{a_1}, A_2 = \frac{a_1 a_4 - a_0 a_5}{a_1}, A_3 = \frac{a_1}{a_1}$ $B_1 = \frac{A_1 a_3 - a_1 A_2}{A_1}, B_2 = \frac{A_1 a_5 - a_1 A_3}{A_1}$ $C_1 = \frac{B_1 A_2 - A_1 B_2}{B_1}, C_2 = \frac{B_1 A_3 - A_1 B_3}{B_1}$ etc.	* * * * * * * * * * * * * * * * * * *	5	4	ω	2	Row 1
$A_2 = \frac{a_1 a_2}{a_2}$	# # # # # # # # # # # # # # # # # # #	C_1	B_1	AI	a_1	a_0
$\frac{-a_0a_5}{a_1}$, $A_3 = \frac{a_1}{a_1A_3}$ $\frac{-a_1A_3}{A_1}$ $\frac{-A_1B_3}{B_1}$		C_2	B_2	A_2	a_3	a_2
$\frac{a_6 - a_0 a_7}{a_1}$		C_3	B_3	A_3	a_5	a_4
					a_7	a_6
	12 13 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		:	*		n n n n n n n n n n n n n n n n n n n