

**PROGRAM** 

: NATIONAL DIPLOMA

ENGINEERING: COMPUTER SYSTEMS

ENGINEERING: ELECTRICAL

**SUBJECT** 

: MEASUREMENTS III

CODE

: EMA 3111

DATE

: SUMMER MAIN EXAMINATION

**15 NOVEMBER 2017** 

DURATION

: (SESSION 1) 08:30 - 11:30

WEIGHT

: 50:50

TOTAL MARKS : 100

**ASSESSOR** 

: DR AA ALONGE

MODERATOR

: DR GR AIYETORO

**NUMBER OF PAGES** : 6 PAGES AND 1 ANSWER SHEET

#### **INSTRUCTIONS TO ALL STUDENTS**

- 1. ATTEMPT ALL QUESTIONS.
- 2. TOTAL MARKS = 100%.
- 3. MARKS WILL BE DEDUCTED FOR UNATTRACTIVE AND UNREADABLE WORK.
- 4. DIAGRAMS AND SKETCHES MUST BE DRAWN NEATLY.
- 5. DIAGRAMS AND SKETCHES MUST BE LABELLED CORRECTLY.
- 6. QUESTIONS MAY BE ANSWERED IN ANY ORDER, BUT ALL PARTS OF THE QUESTION MUST BE GROUPED TOGETHER
- 7. QUESTION PAPERS MUST BE HANDED IN WITH EXAMINATION SCRIPTS

#### **SECTION A: MULTIPLE CHOICE**

Choose the most correct answer and mark an X over the corresponding letter on your answer sheet (Do all rough work at the back of the answer script). Each question attracts 3 marks.

#### **QUESTION 1**

1.1 Which of the following is true of the spatial positions of all darts in the bull-eyed diagram below?



- A) Accurate and precise
- B) Not accurate and not precise
- C) Precise but not accurate
- D) Not precise but accurate
- E) All of the above

| 1.2 An AC signal with a peak value | of 5 Volt is cor | mbined with a DC s | signal of 9 Volt will |
|------------------------------------|------------------|--------------------|-----------------------|
| have a resulting RMS voltage of    |                  |                    |                       |

- A) 4 Volt
- B) 14 Volt
- C) 3.74 Volt
- D) 1.8 Volt
- E) 9.67 Volt
- 1.3 Measurement of AC signals can be achieved using the following procedure.
  - A) Using a DC instrument, preceded by a rectifier
  - B) Using a rectifier, preceded by a DC instrument
  - C) Using an inverter, preceded by a DC instrument
  - D) Using a DC instrument, preceded by an inverter
  - E) Directly using a DC instrument

| 1.4 | If | the | distribution    | of | information | around | a | probable | value | is | symmetric | or | evenly |
|-----|----|-----|-----------------|----|-------------|--------|---|----------|-------|----|-----------|----|--------|
|     |    |     | ted, then it is |    |             |        |   |          |       |    | -         |    |        |

- A) Lognormal distribution
- B) Binomial distribution
- C) Weibull distribution
- D) Normal distribution
- E) Exponential distribution

| 1.5 | The  | threshold    | voltage  | of a cir | cuit is. | 25 Volt. | If the o | deflec | tion voltn | ieter us | sed to meas | sure |
|-----|------|--------------|----------|----------|----------|----------|----------|--------|------------|----------|-------------|------|
|     | this | threshold    | voltage  | gives    | a value  | of 23.2  | Volt.    | The    | accuracy   | of the   | voltmeter   | (in  |
|     | perc | ent) for thi | is measu | rement   | is       |          | -0.000   |        |            |          |             |      |

#### EMA 3111 – MEASUREMENTS III (2017 Main Examination)

- A) 7.2 %
- B) 7.8 %
- C) 92.8 %
- D) 1.8 %
- E) 5.4 %
- 1.6 When a spectrum analyzer just measures the ratio or amplitude of the output, it is known as:
  - A) Vector network analyzer
  - B) Logic analyzer
  - C) Spectrum analyzer
  - D) Scalar network analyzer
  - E) Wave analyzer
- 1.7 Calculations using regressions are called interpolation if,
  - A) The values are within the boundaries of the original values
  - B) The values are greater than one
  - C) The values exist within a defined interval.
  - D) The values are outside the boundaries of the original values
  - E) The values are within acceptable limit.
- 1.8 To reduce loading errors in ammeter, which of the following options should be considered?
  - A) Minimising meter internal resistance
  - B) Increasing meter internal resistance
  - C) Increasing the current supply to meter
  - D) Reducing the current supply to meter
  - E) None of the above
- 1.9 A spectrum analyzer can perform the following functions except:
  - A) Display a signal's amplitude versus within a frequency range
  - B) Validating the characteristics and strength of a signal
  - C) Display a signal's amplitude versus time with a time range
  - D) To detect and quantify interference in signals
  - E) Applied in the analysis of vector signals
- 1.10 Which value of correlation coefficient below defines total correlation?
  - A)0
  - B) -1
  - $C) \infty$
  - D) 1
  - E)-2

SECTION A (TOTAL) = 30 MARKS

## **SECTION B: THEORY AND ESSAY**

This section is to be answered in your answer script. Please ensure that your answers are clear, well-ordered and precise.

#### **QUESTION 2**

- 2.1 Discuss the terms accuracy and precision with respect to measurement. (4)
- A voltmeter was used measure a voltage of 20 Volt where the following readings from five trials are obtained:

| Trials  | 1     | 2     | 3     | 4     | 5     |
|---------|-------|-------|-------|-------|-------|
| Reading | 19.67 | 19.50 | 19.88 | 19.72 | 19.93 |

2.2.1 Determine the accuracy of the voltmeter.

(3)

2.2.2 Determine the precision of the voltmeter.

(3)

2.3 Use dimensional analysis to determine the constituent dimension units of Volt.

(3) [13]

## **QUESTION 3**

- 3.1 Discuss three classes of error to consider in measurement processes. (6)
- 3.2 The following data have been obtained from the measurement of ten randomly selected resistors (with true value of 150 k $\Omega$  ± 10%) from a batch of recently ordered boxes from the manufacturer:

142.5; 137.9; 146.4; 155.5; 149.2; 158.6; 162.3; 154.4; 139.2 and 160.5

Calculate the following:

3.2.1 The arithmetic mean (2)

3.2.2 The geometric mean (2)

3.2.3 The harmonic mean (2)

3.3 Mention three applications of the spectrum analyzer for frequency domain measurements. (3)

[15]

## **OUESTION 4**

| VOL   | 30110114                                                                                                                                                                                                 |                           |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| 4.1   | Compare the four advantages of digital over analog meters as applied in the proce measurement.                                                                                                           | ss of<br>(4)              |
| 4.2   | An ammeter has internal resistance of 10 $\Omega$ and full-scale current of 3 mA. For a full-scale deflection, calculate:                                                                                | 10 A                      |
| 4.2.1 | The value of the shunt resistor, and,                                                                                                                                                                    | (2)                       |
| 4.2.2 | The meter equivalent resistance.                                                                                                                                                                         | (2)                       |
| 4.3   | A multi-range DC voltmeter must be constructed for 10 Volt, 100 Volt and 500 ranges. The basic instrument has an internal resistance of 10 $\Omega$ and 2 mA curcauses full-scale deflection. Calculate: |                           |
| 4.3.1 | The required series resistors for parallel design.                                                                                                                                                       | (3)                       |
| 4.3.2 | The required series resistors for series design.                                                                                                                                                         | (3)<br>[14]               |
| _     |                                                                                                                                                                                                          |                           |
| QUE   | STION 5                                                                                                                                                                                                  |                           |
| 5.1   | Discuss the three types of noise you may encounter in electronic design.                                                                                                                                 | (3)                       |
| 5.2.1 | A batch of 120 $\Omega$ resistors were measured. The tolerance specification is $\pm$ 10° 30°C and the temperature coefficient is given as 140 ppm /°C. Calculate following:                             |                           |
| 5.2.2 | The minimum and maximum absolute values at 30°C,                                                                                                                                                         | (2)                       |
| 5.2.3 | The corresponding values at 120°C and                                                                                                                                                                    | (2)                       |
| 5.2.4 | The tolerance at 120°C.                                                                                                                                                                                  | (2)                       |
| 5.3   |                                                                                                                                                                                                          | wer<br>(3)<br><b>12</b> ] |
|       |                                                                                                                                                                                                          |                           |
| QUE   | STION 6                                                                                                                                                                                                  |                           |
| 5.1   | Using appropriately labelled diagram of a Cathode Ray Tube (CRT), describe functions of each component on the internal structure of a CRT.                                                               | the<br>(6)                |
| 5.2   | Describe the functions of the following parts of an accillance of                                                                                                                                        |                           |
| 5.2.1 | Describe the functions of the following parts of an oscilloscope:  Volt/division dial                                                                                                                    | (1)                       |
| 5.2.1 | Time/division dial                                                                                                                                                                                       | (1)<br>(1)                |
| 5.2.3 | CRT output screen                                                                                                                                                                                        | (1)                       |
|       | 1                                                                                                                                                                                                        | (-)                       |

6.3 Explain the two modes of frequency measurements.

(2)

[11]

## **QUESTION 7**

- 7.1 Mention two advantages of measuring in the frequency domain over the time domain.
- 7.2 Sketch and label the block diagram of a logic analyzer. (3)
- 7.3 A memory of 400 Mb is available and 4 input channels are applied on a logic analyzer. Calculate the maximum clock rate that can be used if a measured time is 500 ms is required. (2)

[5]

SECTION B (TOTAL) = 70 Marks

| STUDENT SURNAME: |  |
|------------------|--|
| STUDENT NUMBER:  |  |

# **ANSWER SHEET**

(This sheet must be handed in with your examination script)

Mark your final answer with large clear cross (X) over the box you have chosen as your answer.

## **QUESTION 1**

| 1.1  | A | В | C | D | Е |
|------|---|---|---|---|---|
| 1.2  | A | В | C | D | Е |
| 1.3  | A | В | C | D | Е |
| 1.4  | A | В | C | D | Е |
| 1.5  | A | В | C | D | Е |
| 1.6  | A | В | С | D | Е |
| 1.7  | A | В | C | D | Е |
| 1.8  | Α | В | С | D | Е |
| 1.9  | A | В | C | D | Е |
| 1.10 | A | В | С | D | Е |