

PROGRAM

: BACHELOR OF ENGINEERING TECHNOLOGY

ELECTRICAL

SUBJECT

: ELECTROTECHNOLOGY 1B

CODE

: ELTELB1

DATE

: MAIN EXAMINATION / NOVEMBER 2017

16/NOV/2017; 12:30

DURATION

: 3 HOURS

WEIGHT

: 40:60

TOTAL MARKS

: 100

FULL MARKS

: 100

ASSESSOR

: Dr. W. DOORSAMY

MODERATOR

: Dr. P. BOKORO

NUMBER OF PAGES : 6 PAGES

REQUIREMENTS

STANDARD STATIONARY.

A NON-PROGRAMMABLE CALCULATOR MAY BE USED

INSTRUCTIONS

READ INSTRUCTIONS CAREFULLY.

- ALL CALCULATIONS AND ANSWERS MUST BE DONE WITH A MINIMUM OF 3 DECIMALS.
- WRITING MUST BE IN BLUE OR BLACK INK PEN ONLY- NO PENCIL WRITING WILL BE MARKED

WORK NEATLY, UNTIDY WORK MAY BE PENALIZED.

- ALL UNITS MUST BE SHOWN-MARKS WILL BE DEDUCTED FOR NO OR WRONG UNITS
- ALL CALCULATIONS MUST BE DONE IN COMPLEX NOTATION AND ANSWERS MUST BE WRITTEN IN POLAR FORM, WHERE APPLICABLE.
- ALL VOLTAGES AND CURRENTS ARE GIVEN IN PEAK UNLESS STATED OTHERWISE

SECTION A:

AC Theory, Circuits and Network Analysis

QUESTION 1 [6 Marks]

In the circuit shown in Figure 1, $i = 1.414 \sin(5000t + 90^{\circ}) A$ and $e = 7.071 \sin(10000t - 45^{\circ}) V$. Find the time-domain expression for the waveform of the voltage v.

Figure 1: Circuit for question 1

QUESTION 2 [10 Marks]

Obtain the Thevenin and Norton equivalent circuits for the network shown in Figure 2 between the terminals a and b. Calculate the current in a load impedance $Z_L = 50 \angle 60^{\circ} \Omega$ when connected across terminals a and b.

Figure 2: Network for question 2

QUESTION 3 [10 Marks]

A power supply with output voltage $v = 20 \angle 0^o V$ at f = 150 Hz with an internal impedance $Z_{in} = 20 \angle 20^o \Omega$ is connected to terminals \boldsymbol{a} and \boldsymbol{b} of the network shown in Figure 3. What is the output current of the power supply if $R = 10 \Omega$, and $C = 50 \mu F$?

Figure 3: Network for question 3

[26 Marks]

SECTION B

Power in AC circuits

QUESTION 4 [9 Marks]

Choose one correct answer and give a reason for your choice:

4.1 The average power absorbed by an ideal inductor is zero. (3)

- (a) True
- (b) False

4.2 The Thevenin impedance of network seen from the load terminals is $80 + j55 \Omega$. For maximum power transfer, the load impedance must be:

(3)

- (a) $-80 + j55 \Omega$
- **(b)** $-80 j55 \Omega$
- (c) $80 j55 \Omega$
- (d) $80 + j55 \Omega$

4.3 A source is connected to three load impedances Z_1 , Z_2 and Z_3 in parallel. Which of the following is not true:

(a)
$$P = P_1 + P_2 + P_3$$

(b)
$$Q = Q_1 + Q_2 + Q_3$$

(c)
$$|S| = |S_1| + |S_2| + |S_3|$$

(d)
$$S = S_1 + S_2 + S_3$$

QUESTION 5 [15 Marks]

Figure 4 shows a load being fed by a voltage source through a transmission line. The combined impedance of the line and return path is $4 + j2 \Omega$.

- 5.1 Find the real and reactive powers absorbed by the line and the load. (10)
- **5.2** Determine the impedance to be added to load for maximum power transfer. (5)

Figure 4: Network for question 5

QUESTION 6 [12 Marks]

A 450 kW slurry pump at a plant operates for 21 days a month. The pump operates at 0.76 lagging power factor for 8 hours each morning, and then at 0.83 lagging power factor for 4 hours each night. Determine the monthly electricity bill based on the following tariff structure.

Energy Charge: 12 cents per kWh

Power Factor penalty: 1.25% of energy charge for every 0.01 that pf falls below 0.80

Power Factor credit: 1.25% of energy charge for every 0.01 that exceeds 0.80

[36 Marks]

SECTION C:

Magnetically Coupled Circuits

QUESTION 7 [8 Marks]

Coils 1 and 2 are wound on an insulating core and are connected with via terminals **B** and **C** in Figure 5(a), and connected via terminals **B** and **D**, in Figure 5(b).

- 7.1 What terms are used to describe how the coils are coupled in Figures 5(a) and 5(b)? (2)
- 7.2 Explain, using suitable equations, how to determine mutual inductance of the coils. (6)

Figure 5: Connected coils for question 7

QUESTION 8 [12 Marks]

Find V_0 in the circuit given in Fig. 7.

Figure 7: Connected coils for question 8

[20 Marks]

SECTION D:

Three-Phase Systems

QUESTION 9 [9 Marks]

A load consisting of three identical coils, each of resistance 15 Ω and inductance 60 mH are connected in star to a balanced 400 V rms, 50 Hz, three-phase supply. Determine the total power dissipated in the load.

QUESTION 10 [9 Marks]

The input power to a three-phase motor was measured by the two wattmeter method. The readings were 5.2 kW and -1.7 kW, and the line voltage was 400 V rms. Calculate:

10.1 Total active power; (2)

10.2 Power factor; (4)

10.3 Line current. (3)

[18 Marks]

END