

PROGRAM : NATIONAL DIPLOMA

ENGINEERING: ELECTRICAL

SUBJECT : **DIGITAL SYSTEMS 2**

<u>CODE</u> : EDS 231

DATE : SUMMER EXAMINATION 2017

16 NOVEMBER 2017

<u>DURATION</u> : (SESSION 2) 12:30 - 15:30

<u>WEIGHT</u> : 40:60

ASSESSOR : Mr. V Rameshar

MODERATOR : Mr. D.R. Van Niekerk

NUMBER OF PAGES : PAGES 4

FULL MARKS : 100

INSTRUCTIONS TO STUDENTS

1. ATTEMPT ALL QUESTIONS. 100 marks = 100%

- 2. THEORY TYPE QUESTIONS MUST BE ANSWERED IN POINT FORM BY CAREFULLY CONSIDERING THE MARK ALLOCATION.
- 3. ALL DIAGRAMS AND SKETCHES MUST BE DRAWN NEATLY AND IN PROPORTION.
- 4. ALL DIAGRAMS AND SKETCHES MUST BE LABELED CLEARLY.
- 5. ALL WORK DONE IN PENCIL EXCEPT DIAGRAMS AND SKETCHES WILL BE CONSIDERED AS ROUGH WORK.
- 6. NOTE: MARKS WILL BE DEDUCTED FOR WORK, WHICH IS POORLY PRESENTED.

[34]

QUESTION 1

1.1.1 1.1.2 1.1.3	DTL CMOS RTL	
1.1.4	DL	(4)
1.2	With the use of TTL diagrams, explain current source and current sink. Label the sink/source current values and Fan-out capabilities for TTL (7400).	(8)
1.3	Show with the aid of a sketch how you would interface a 7-segment display. Provide all labels.	(4)
		[16]
QUES'	<u>ΓΙΟΝ 2</u>	
2.1	Sketch an asynchronous 2 bit up counter using positive edge triggered J-K flip/flop IC's. Provide a suitable truth table.	(8)
2.2	Design a synchronous 3-bit down counter from 1 st principles using J-K flip flops and K-Maps. Please utilise transition table below. All steps must be shown.	(14)
	$\begin{array}{c cccc} Q \rightarrow Q_{n+1} & J & K \\ \hline Q \rightarrow Q & 0 & d \\ \hline Q \rightarrow 1 & 1 & d \\ \hline 1 \rightarrow Q & d & 1 \\ \hline 1 \rightarrow 1 & d & 0 \\ \hline \end{array}$	
2.3	Sketch the timing diagram for a twisted ring counter and indicate on it how you get to a MOD-10.	(6)
2.4	Data is loaded into a shift register in two main forms, either parallel or series. With the aid of a sketch, show how a parallel in series out shift register would move 4 bits of data in and out. How many clock pulses would make this possible?	(6)

QUESTION 3

3.1 If a 555 timer is configured to run in the a-stable mode (oscillator) when

 $V_{CC} = 6.5 \text{ V}$; $C = 0.133 \text{ } \mu\text{f}$; $R1 = 3.7 \text{ } k\Omega$ and $R_2 = 4.7 \text{ } k\Omega$.

Calculate the following:

- 3.1.1 T_H
- $3.1.2 T_{L}$
- 3.1.3 Frequency
- 3.1.4 Duty cycle.

(8)

- 3.2 Make a neat-labeled sketch of the internal parts of a 555 timer IC.
- (5)
- Pulsed circuits may be triggered manually or automatically. By the use of timing, diagrams explain the difference between triggerable and non-retriggerable mono-stables by referring to 74121 and 74122 IC's.

(8) [21]

QUESTION 4

4.1 Describe a RAM and ROM

(4)

4.2 Explain the meaning of Dynamic and Static memory.

(4)

4.3 How would you describe noise and noise immunity?
4.4 How would a unused TTL input act if it is open?

(4) (2)

4.4 How would a unused TTL input act if it is open?4.5 How can a TTL circuit be interfaced with a CMOS circuit?

(2)

[16]

QUESTION 5

- 5.1 Sketch a 4-bit R/2R DAC (digital-to-analog converter). Show all resistor ratio values.
 - (5)
- 5.2 Sketch a successive approximation (analog-to-digital convertor).
- (8) [13]

TOTAL = 100