

PROGRAM

: BACHELOR DEGREE

Urban and Regional Planning

SUBJECT

: CIVIL ENGINEERING FOR PLANNING

CODE

: CIPTRB1

DATE

: SUMMER EXAMINATION 2017

21 NOVEMBER 2017

DURATION

: (SESSION 1) 08:30 - 11:30

WEIGHT

: 50:50

TOTAL MARKS

: 100

ASSESSOR

: MR. J. OKAFOR

MODERATOR

: MR. E. MAKONI

NUMBER OF PAGES : 4 PAGES

INSTRUCTIONS

- 1. THIS IS NOT AN OPEN BOOK EXAM.
- 2. READ THE QUESTIONS CAREFULLY.
- 3. WRITE NEATLY AND LEGIBLY.
- 4. PLEASE ANSWER ALL QUESTIONS.

Que	stion 1	
1.1	Explain the three (3) types of soil zones in South Africa, why are they crucial in planning? (5)	
1.2	Clarify the planning strategy of having trees and open spaces in built up areas.	(5)
1.3	Geotechnical aspect is very crucial in planning, write briefly on this.	(5)
1.4	Waste and sanitation are key parts in urban growth planning analysis, as planners, ex how these apply.	plain (5)
	TOTAL FOR QUESTION 1 – 20 MARKS	
Ques	stion 2	
2.1	Township roads development is generally governed in terms of layout design and cor interests, explain how this works.	nflicting (10)
2.2	Describe storm water and explain its importance during development. What lessons clearnt from storm water management by planners?	ean be (10)
	TOTAL FOR QUESTION 2 – 20 MARKS	
Ques	etion 3	
3.1	South African electricity generation mainly is by thermal power and hydro-pow generation. Briefly state how these apply in electricity production.	wer plant (5)
3.2	The functioning of water supply chain to settlements depends on various institutions a which are these below. Therefore, explain the responsibility of these units. a . Department of water affairs and forestry b . Rand Water c . Local authorities	amongst (5)
3.3	What is traffic impact assessments and why has it become a significant element of maplanning processes?	any (10)
	TOTAL FOR QUESTION 3 – 20 MARKS	

- 4.1 How do transformer types work in power distribution to developments? (5)
- 4.3 Explain very briefly the main principle of road layout hierarchy. (5)
- 4.3 Draw and label full cloverleaf. State one advantage and disadvantage of this engineering provision. (10)

TOTAL FOR QUESTION 4 – 20 MARKS

Question 5

With clear diagram, show the combined pumping station and gravity feed water supply engineering design. What is its main benefit in water supply chain? (5)

- 5.2 The length of a trench excavation for water supply pipelines for a new development measures 10.011 km in total. The average width of the trenches is 22.08 mm and the average depth is 2.15 m. What volume of the material measured in m³ had to be excavated? Leave your answer in three decimal places (5)
- 5.3 It is anticipated that an altogether new residential /light industrial development will consist of the following types of development by the year 2022
 - A central CBD of 8ha
 - A commercial area of 4ha
 - A light industrial area of 5ha
 - A population of 10 000 persons at an average density of 30 persons /ha
 - Two-day schools occupying 4ha together
 - A hospital with 60 beds
 - A garage occupying 2ha

Using the design guidelines provided with this paper and assuming, that they are applicable to the year 2022:

- a. Calculate the average daily water demand of the whole development
- b. Calculate the summer peak water demand of the whole development in ℓ /s. Use peak factor of 1.5. maximum summer peak factor = 4.5; (1000 ℓ = 1K ℓ =1m³)

TOTAL FOR QUESTION 5-20 MARKS

TOTAL: 100 MARKS

Annexure

Office park loke/ha/day Water intensive industries As per specific request design guidelines for water supply Special GENERAL Garage 8kt/ha 1.1 Definitions Hospital 0,6kt/bcd Café An equivalent erf is a unit that uses 1000t water per day on average. This 40/m2 Hotel 4t/m2 unit is not related to the size of the erf. Old age home 0,4kt/inhabitant Schools with hostels DESIGN STANDARDS - PIPES 8kt/ha + 150t/inhabitant Day schools etc. 8kt/ha 2.1 Average daily demand 2.2 Peak factors Agricultural holdings Average peak factor 3 x average daily demand - Undeveloped 2,25kt/bruto ha/day Summer peak 1,5 x average daily demand - Developed areas already Maximum summer peak 4,5 x average daily demand subdivided · 2,25kt/holding/day - Developed areas not 2.3 Fire fighting yet subdivided 4,5kt/holding/day for one Agricultural holdings possible subdivision No additional requirement above 6,75kt/holding/day for two peak flow All residential areas possible subdivisions 15t/s at 7m minimum pressure head Residential All others 100e/s at 15m minimum - Density 30 persons/ha : 400t/person/day = 12kt/ha/day pressure head 60 persons/ha 250t/person/day = 15kt/ha/day Supply pipelines are sized to convey the maximum summer peak and water 90 persons/ha : 200t/person/day = 18kt/ha/day required for fire fighting. Average number of persons per household (houses or flats) 2.4 Spacing of fire hydrants 3,1 persons/household Agricultural holdings Commercial 10kt/ha/day 600m max. spacing All residential areas 250m max. spacing All others Offices FSR = 0,2 180m max. spacing 6kt/ha/day FSR = 0,3 9kt/ha/day 2.5 Duration of fire flow FSR = 0.4 12kt/ha/day Agricultural holdings 1 hour CBD General l6kt/ha/day Residential 2 hours All others 4 hours Light industrial 12,5kt/ha/day The head of the fire department should also be consulted. General industrial

25kt/ha/day