DEPARTMENT OF GEOLOGY		
MODULE CODE	GLG2B10	
MODULE NAME	Structural Geology and Plate Tectonics	
CAMPUS	APK	
EXAM	NOVEMBER 2016	
Date	22 November 2016	
Assessor(S)	Dr Herman van Niekerk	
	Dr Jeremie Lehmann	
Internal Moderator	Dr Bertus Smith	
External Moderator		
Duration	180 minutes	
Marks	180	

Number of pages	6 (including front page)
Instructions	Answer all the questions

Exam paper 16GLG2B10 - Section 1 - Structural geology (90 Marks)

1. Primary and non-primary structures

- a. Give the name of three primary structures. (6)
- b. Give the name of four non-primary structures. (8)

2. Stress and strain

- a. Give three examples of strain markers that can be used to quantify strain in a rock. (6)
- b. As an approximation, which type of strain will suffer a rotten tomato that you throw on a wall? (5)
- c. Define what mean stress means. (5)
- d. Define what effective stress means. (5)

3. Rheology

Are these statements **true** or **false**?

If the statement is false, give the right answer.

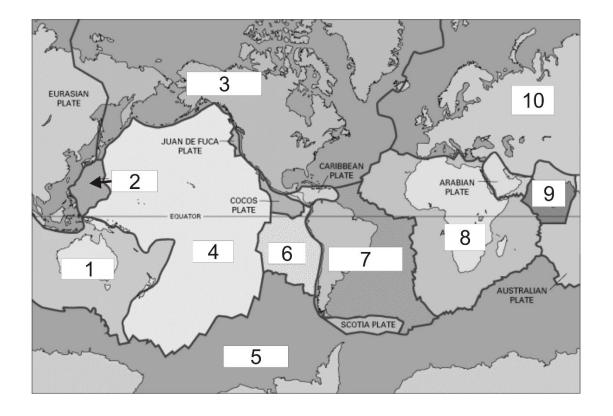
- a. The amount of elastic strain a rock can accommodate is usually higher than the amount of plastic strain. (3)
- b. Rocks are more brittle when deformed at relatively low strain rate. (3)
- c. Boudinage forms when an incompetent layer embedded in competent layers is affected by layer parallel stretching. (3)

4. Ductile deformation

- a. Explain by means of annotated sketches what a ptygmatic fold is. (5)
- b. What are the two most important variables affecting the wavelength of a single layer buckle fold. (8)

5. Brittle deformation

- a. By means of annotated drawings define what an en echelon tension gash array is. (8)
- b. What are conjugate faults and what are the angular relations between them and the principal stress axis σ_1 , σ_2 and σ_3 . (8)

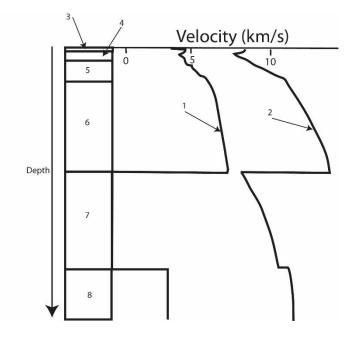

6. Fabrics and shear zones

- a. Using sketches to help you, explain differences between crenulation cleavage and gneissic foliation.
 (6)
- b. By means of annotated diagrams, explain what the process of transposition is. (6)
- c. Give at least two different type of lineations typically formed during folding. (6)

Section 2: Plate Tectonics

Question 1:

- a) Provide the names of the tectonic plates as indicated by the numbers in the figure below (10 marks).
- b) Indicate the type of plate tectonic boundary between the following plates (choose between constructive, destructive or conservative plate boundary) (5 marks).
 - 1. 6 and 7
 - 2. 9 and 10
 - 3. 4 and 6
 - 4. 8 and 10
 - 5. 4 and 1



Question 2:

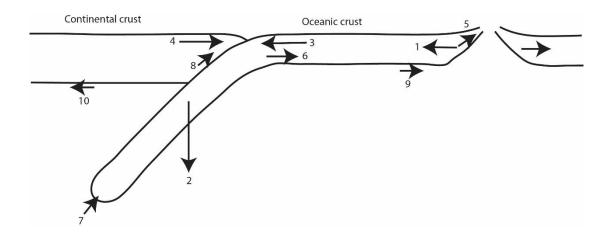
- a) San Andreas Fault (1)
- b) Baikal lakes (1)
- c) Lake Victoria, Lake Malawi and Lake Tanganyika (1)
- d) The Challenger Deep (1)
- e) Iceland (be careful, there are two here) (2)
- f) Everest, K2, Makalu and Lhotse (1)
- g) European Alps (1)
- h) Mount Saint Helens and Mount Rainier (1)
- i) Gulf of Aden (1)
- j) Islands of Hawaii (1)
- k) Islands of Japan (1)
- I) Alpine fault in New Zealand (1)
- m) Dead sea (1)

Question 3

Answer the questions related to the figure below (14).

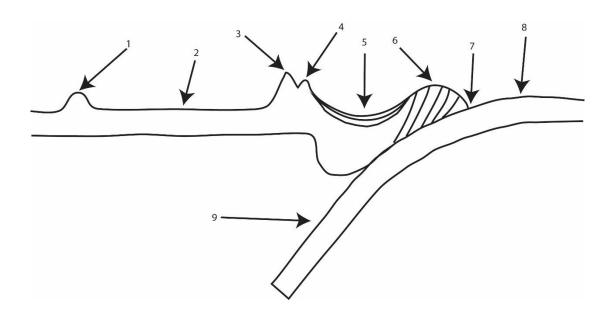
- a) What does the figure represent? (2)
- b) What does the line marked as "1" represent? (2)
- c) What does the line marked as "2" represent? (2)
- d) Label the zones that make up the internal structure of the earth as indicated by numbers "3" to "8". (6 marks)
- e) Based on the figure, is zone "7" liquid or solid and state why. (2)

Question 4


State whether the following is true or false (23):

- a) S waves are transmitted through the mantle and are therefore present in the Earth's core. (1)
- b) The mantle transitional zone can either be a mineral phase change or a fluid layer. (1)
- c) The Atlas Mountains is an example of a continental island arc. (1)
- d) The Rhine Graben in a mantle activated graben. (1)
- e) Gondwanaland was made up of Laurasia and Pangea. (1)
- f) The most destructive earthquakes are associated with mid oceanic spreading ridges. (1)
- g) Paleomagentics can be used to indirectly age date sedimentary rocks. (1)
- h) The Edge Force mechanism model for convection cells driving plate tectonics is more effective in heat transfer than the Mantle Drag theory. (1)
- i) The heat flow in the crust increases with the age of the crust. (1)
- j) The average geothermal gradient across the upper 100km of depth of continental crust is 25 degrees Celsius per kilometre. (1)
- k) Large scale earthquakes occurring at shallow focal depths always result in the formation of a Tsunami. (1)
- I) The Paramagnetic minerals maintain their induced magnetism when removed from a magnetic field.
- m) Gondwanaland broke up into the landmasses that we know today as Africa, South America, Antarctica, India, Asia and Madagascar.

- n) Deep focal earthquakes typically occur along subduction zones.
- o) The Vine-Matthews hypothesis explains the formation of magnetic lineations present on the sea floor.
- p) Oceanic lithosphere is terminated horizontally by thrust faults.
- q) The Mesosphere is a weak layer that terminates at a depth of 700km.
- r) The crustal component of the Lithosphere can be oceanic and/or continental in nature.
- s) The study of climatic indicators in rocks can be used to infer paleo-longitude.
- t) The lithosphere is composed out of the crust, upper mantel and mantle transition zone. (1)
- u) Lithospheric components can made up of mantle material. (1)
- v) The depth at which the asthenosphere is starts is shallow beneath continental crust and deep below oceanic crust (1)
- w) The Lithosphere extends down to the outer core. (1)


Question 5

Name the numbered forces that act in on tectonic plates in the following schematic. (10)

Question 6

a) Name the numbered features in the schematic representation of a subduction zone as indicated below.
 (9)

b) The feature numbered at "6" contain lines that represent fault planes. Are these fault planes formed as a result of normal or reverse faulting? (1)

Question 7

Name the 5 types of geological evidence that can be used to test a paleocontinental reconstruction. (5)