

FACULTY OF SCIENCE

٦

1

DEPARTMENT OF BIOTECHNOLOGY ANF FOOD TECHNOLOGY DIPLOMA IN BIOTECHNOLOGY			
MODULE	MCB1AE2 MICROBIOLOGY IB		
CAMPUS	DFC		
JUNE 2016 FORMATIVE ASSESSMENT			
DATE: 9 June 2016:		SESSION 12:30 – 14:30	
ASSESSOR(S):		MR K MACLEAN	
INTERNAL MODERATOR:		MR L ALAGIOZOGLOU	
EXTERNAL MODERATOR:		N/A	
DURATION		2 HOURS	
MARKS: 140		140	
SURNAME AND INITIALS:			
STUDENT NUMBER:			

NUMBER OF PAGES: 6 PAGES

CONTACT NR: _

<u>REQUIREMENTS</u>

: ASSESSMENT ANSWER SCRIPTS.

- : ONE POCKET CALCULATOR PER STUDENT.
- : A MCQ CARD.

INSTRUCTIONS TO STUDENTS:

- 1. THIS QUESTION PAPER MUST BE HANDED IN **<u>SEPARATELY</u>** WITH YOUR ANSWER BOOK AND MCQ ANSWER CARD.
- 2. DO NOT FOLD THE MCQ CARD!
- 3. WRITE YOUR SURNAME AND INITIALS ON THE MCQ CARD.

QUESTION 1

MCQ questions. Answer on the separate MCQ card and hand in with your answer book.

- 1.1 The following are macro-elements:
 - a. Carbon.
 - b. Calcium.
 - c. Manganese.
 - d. All of the above are macro-elements.
 - e. Only (a) and (b).

1.2 The following are / is / an example/s of / a growth factor/s:

- a. D-galactose.
- b. Carbon.
- c. Nitrogen.
- d. (b) and (c).
- e. None of the above is growth factors.

1.3 Organisms which uses organic molecules as a carbon source are:

- a. Heterotrophs.
- b. Autotrophs
- c. Chemolithoautotrophy
- d. None of the above

1.4 Exponential bacterial growth in a nutrient broth could become unbalanced in an:

- a. Test tube
- b. Continuous culture unit if the waste products are not controlled
- c. (a) and (b)
- d. None of the above are correct

1.5 Cell density can be measured with the aid of an:

- a. Special microscope slide
- b. Spectrophotometer
- c. Electronic colony counter
- d. Special autoclave

1.6 The rate of incoming medium in a vessel which is equal to the removal of medium in a vessel is called a:

- a. Turbidostat
- b. A minimal nutrient
- c. Batch culture
- d. Chemostat

1.7A spectrophotometer measures the ____ of the culture in the growth vessel.

- a. absorbance or transmittance
- b. minimal nutrient
- c. temperature
- d. oxygen
- 1.8 Sulphur is required for _____ synthesis.
 - a. amino acid
 - b. iron
 - c. carbohydrate
 - d. lipid

1.9 Acidophilic bacteria has a minimum and maximum pH of:

- a. 0-5.5
- b. 1-5.5
- c. 0-5.8
- d. 1-5.8

1.10 Barophiles are organisms which grow optimally in the ocean at depths of:

- a. 10 meters
- b. 20 meters
- c. 1000 meters
- d. Any depth

1.11 Nutrient agar could be used as a differential media.

- a. True
- b. False
- 1.12 Autotrophs use carbon dioxide as its sole carbon source.
 - a. True
 - b. False
- 1.13 All microbiology equipment including petri dishes and media can be sterilised in an autoclave.

- a. True
- b. False

1.14 In nature many microbes forms biofilms on surfaces

- a. True
- b. False

1.15 Vitamins included in the media for microbial cultivation serves as:

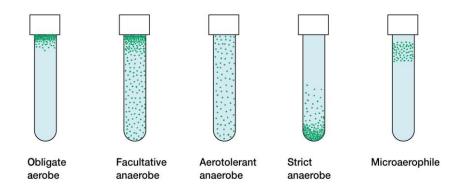
- a. purines
- b. pyrimidines'
- c. enzymes
- d. halogens
- e. enzyme co-factors

[15]

QUESTION 2

2.1 **Fill in the open spaces** indicated by a letter of the alphabet. Write it in your answer book and **NOT** on the test paper.

The reduction of microbial numbers to a level deemed safe is called _(a)_ . A lactose positive colony appears red on MacConkey agar due to _(b)_ being activated when the pH decreases. Carrier proteins, called _(c)_ may sometimes increase the rate of diffusion across a semipermeable membrane in bacteria. Chemical agents that kill or inhibit growth of microorganisms on tissue are called_(d)_.


A total of _(e)_ ml of the specimen is transferred to agar during the pour plate technique and the final count is measured as _(f)_. Cell constituents are synthesized during the _(g)_ phase of the bacterial growth curve. The advantage of using a counting chamber to count microorganisms is that one can distinguish between _(h)_ and _(i)_ cells. A microbial population can be kept in the log exponential growth phase when using a _(j)_ culture system.

[10]

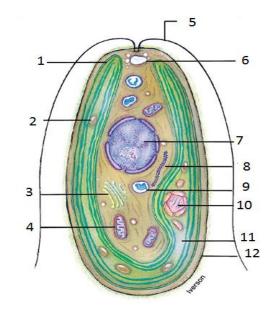
(8)

QUESTION 3

- 3.1 Name the four measures involved in a heat-killing experiment and give the definitions of each measure.
- 3.2 Number the test tubes below 1-5 (from left to right) then provide the oxygen requirements for these microbes in your answer book using the appropriate number. (5)

- 3.3 Differentiate between "Flash and Ultra High temperature" pasteurization of milk.
- 3.4 Certain chemicals can be used for the control microorganisms. Give an example of a halogen which can be used and also describe its mode of action. In addition, give one disadvantage of this chemical as a potential threat to human health.

(3) **[20]**


(4)

QUESTION 4

4.1	You obtained 164 colonies from the 1/100 dilution on a nutrient agar plate in a serial dilution experiment where you used the spread plate technique With the aid of neat calculations demonstrate and explain how you would determine the total psychrophilic bacterial count.	
	Additionally explain what you would change to perform the same experiment for mesophilic coliforms.	(7)
4.2	Name five (5) vitamins required by certain microorganisms and give the function of each. Also give an example of a microorganism requiring the	
	vitamin.	(15)
4.3	With the aid of a graph explain the bacterial growth curve. Give possible	. ,
	reasons for entering growth inhibition at some point in the graph.	(8) [30]

QUESTION 5

5.1	Describe how algae reproduce asexually.	(7)
5.2	Elaborate on the biotechnological value of algae.	(6)
5.3	Label the ultrastructure of the algal cell below in your answer book.	(12)
		[25]

QUESTION 6

		[20]
6.2	Differentiate between the Mycoplasmas and Rickettsia's.	(8)
6.1	Tabulate the differences between bacteria and viruses.	(12)

QUESTION 7

7.1	Explain the life cycle of Entamoeba histolytica and name the causative	
	agents for African sleeping sickness.	(10)
7.1	Describe the life cycle of the malaria parasite in humans.	(10)
		[20]

TOTAL 140

Microbiology

MCB1AE2

MEMORANDUM

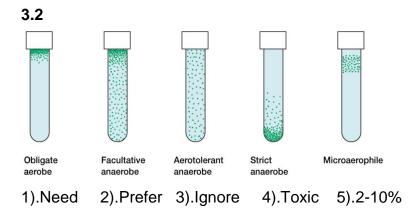
June 2016

Q1

- 1.1 e
- 1.2 e
- 1.3 a
- 1.4 с
- 1.5 b 1.6 d
- 1.7 a
- 1.8
- a 1.9 а
- 1.10 d
- 1.11

b

- 1.12 a
- 1.13 b
- 1.14 a
- 1.15 e


Q2

- a) sanitation
- phenol red dye b)
- permeases c)
- d) antiseptics
- e) 1 ml
- Cell forming units f)
- lag g)
- h) dead
- i) alive
- continuous j)

Q3

- thermal death time (TDT)
 - shortest time needed to kill all microorganisms in a suspension at a _ specific temperature and under defined conditions
- decimal reduction time (D or D value)

- time required to kill 90% of microorganisms or spores in a sample at a specific temperature
- Zvalue
 - increase in temperature required to reduce D by 1/10
- F value
 - time in minutes at a specific temperature needed to kill a population of cells or spores

3.3

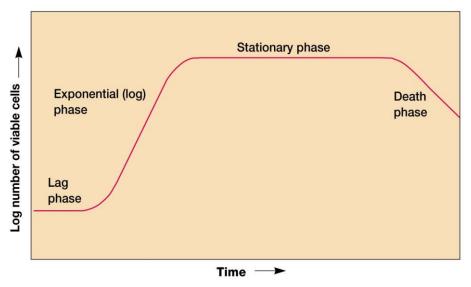
- flash pasteurization (high temperature short-term HTST)
 - 72°C for 15 seconds then rapid cooling
- ultrahigh-temperature (UHT) sterilization
 - 140 to 150°C for 1 to 3 seconds

3.4

- e.g., iodine
 - oxidizes cell constituents and iodinates proteins
 - skin damage, staining, and allergies can be a problem
 - OR
- e.g., chlorine
 - oxidizes cell constituents
 - can react with organic matter to form carcinogenic compounds

Q4

4.1


164 colonies x 10 --- (to convert0.1 ml to 1ml) x 100 --- (dilution factor = --- 164000 CFU/ML --- 37 degrees Celsius Will change media --- and temperature

Vitamin	Functions	Examples of Microorganisms Requiring Vitamin ^a
Biotin	Carboxylation (CO2fixation) One-carbon metabolism	Leuconostoc mesenteroides (B) Saccharomyces cerevisiae (F) Ochromonas malhamensis (A) Acanthamoeba castellanii (P)
Cyanocobalamin (B12)	Molecular rearrangements One-carbon metabolism—carries methyl groups	Lactobacillus spp. (B) Euglena gracilis (A) Diatoms and many other algae (A) Acanthamoeba castellanii (P)
Folic acid	One-carbon metabolism	Enterococcus faecalis (B) Tetrahymena pyriformis (P)
Lipoic acid	Transfer of acyl groups	Lactobacillus casei (B) Tetrahymenaspp. (P)
Pantothenic acid	Precursor of coenzyme A—carries acyl groups (pyruvate oxidation, fatty acid metabolism)	Proteus morganii (B) Hanseniasporaspp. (F) Parameciumspp. (P)
Pyridoxine (B6)	Amino acid metabolism (e.g., transamination)	Lactobacillus spp. (B) Tetrahymena pyriformis (P)
Niacin (nicotinic acid)	Precursor of NAD and NADP—carry electrons and hydrogen atoms	Brucella abortus, Haemophilus influenzae (B) Blastocladia pringsheimii (F) Crithidia fasciculata (P)
Riboflavin (B2)	Precursor of FAD and FMN—carry electrons or hydrogen atoms	Caulobacter vibrioides (B) Dictyosteliumspp. (F) Tetrahymena pyriformis (P)
Thiamine (B1)	Aldehyde group transfer (pyruvate decarboxylation, α-keto acid oxidation)	Bacillus anthracis (B) Phycomyces blakesleeanus (F) Ochromonas malhamensis (A) Colpidium campylum (P)

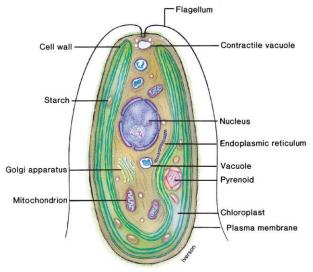
 Table 5.3
 Functions of Some Common Vitamins in Microorganisms

^aThe representative microorganisms are members of the following groups: bacteria (B), fungi (F), algae (A), and protozoa (P).

4.3

- nutrient limitation
- limited oxygen availability
- toxic waste accumulation
- critical population density reached

Q5


- Asexual
 - fragmentation

- thallus breaks up and each fragment forms a new thallus
- spores
 - zoospores flagellated motile
 - aplanospores nonmotile
- binary fission
 - mitotic nuclear division followed by cytoplasmic division

5.2

- cleaning and polishing agents
- deodorizers
- fertilizers
- filters
- soundproofing and insulating materials
- paint additive

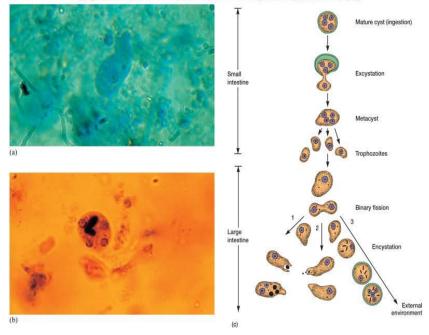
5.3

Q6

6.1

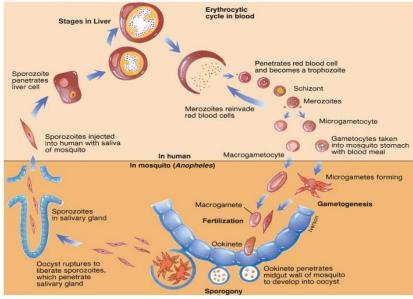
Bacteria	Virus
➤ Has cell wall	 Has no cell wall (Protein coat present)
(Peptidoglycan/Lipopolysaccharide)	
Unicellular	No cells
Has both RNA & DNA floating in	Has either RNA/DNA enclosed in protein
cytoplasm.	coat
Can grow on non-living surfaces	Must have a living host to multiply
Are intercellular(They live in between	Are intracellular(They infiltrate the hosts
cells)	cells and live inside the cell)
Reproduces asexually	Invades the host cell and takes over the
	cell causing it to replicate viral DNA/RNA

6.2


• MYCOPLASMAS

- ✓ No cell wall
- ✓ Cocci pear shaped
- ✓ Pleomorphism
- \checkmark "Fried egg" (ANY 3)
- RICKETTSIAS
- ✓ Pleomorphic (rod-cocci)
- ✓ Gram negative
- ✓ Parasitic or mutualistic
- ✓ Smallest bacteria

Q7


7.1

Copyright I The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Trypanasoma

