Question 1 [14 marks]

Waves on a thin, flexible string of mass per unit length ρ and subject to a tension T are governed by the linear wave equation:

$$
\frac{\partial^{2} y}{\partial t^{2}}=\frac{T}{\rho} \frac{\partial^{2} y}{\partial x^{2}}
$$

where $y(x, t)$ is the wave displacement at time t and position x, and $\frac{T}{\rho}=v^{2}$.
(1.1) Show that travelling waves of the form

$$
y(x, t)=y(u)
$$

where $u=x-v t$, may be solutions of the linear wave equation above, and find the two values of v that make them so. [6 marks]
(1.2) Is the wave function $y(x, t)=4 \ln (5 x-7 t)$ a solution of the linear wave equation above? Prove your answer mathematically, and find the possible value(s) for the speed of propagation of the wave (v) from your proof. [4 marks]
(1.3) Consider the wave function $y(x, t)=x^{2}+v^{2} t^{2}$.
(a) Show that $y(x, t)$ is a solution of the linear wave equation above. [2 marks]
(b) Show that $y(x, t)$ can be written as $y(x, t)=f(x+v t)+g(x-v t)$ and determine the functional forms of f and g. [2 marks]

Question 2 [16 marks]

(2.1) A sinusoidal wave propagating on a string is described by the wave function

$$
y(x, t)=0.150 \sin (0.80 x-50.0 t)
$$

where x and y are in meters and t in seconds. The mass per unit length of the string is $12.0 \mathrm{~g} / \mathrm{m}$.
(a) Calculate the maximum transverse acceleration of an element of this string. [3 marks]
(b) Calculate the maximum transverse force on a segment of the string of length 1.0 cm . [2 marks]
(c) Calculate the tension in the string. [2 marks]
(2.2) Explain what it means mathematically for a wave equation to be defined as linear. [2 marks]
(2.3) Consider the following wave equation:

$$
\frac{\partial y}{\partial t}+6 y \frac{\partial y}{\partial x}+\frac{\partial^{3} y}{\partial t^{3}}=0
$$

where the wave displacement at time t and position x is given by $y(x, t)$. Is this wave equation linear or not? Substantiate your answer mathematically and carefully explain your conclusion. [7 marks]

Question 3 [24 marks]

(3.1) Explain in your own words why complex waveforms are important, and why they are used as solutions of wave equations originating from real physical problems. [2 marks]
(3.2) The equation below

$$
m \frac{d^{2} x}{d t^{2}}+k x+b v=0
$$

describes an harmonic oscillator moving in a resistive environment. Here m is the mass of the oscillator, k is the spring constant of the spring and b indicates the damping due to friction. Show that a complex exponential of the form

$$
z=A e^{i(p t+\alpha)}
$$

(where A, α and p are parameters) to solve the equation above. In particular, show that this is the case for $p=\sqrt{\omega_{0}^{2}-\frac{\gamma^{2}}{4}}+i \frac{\gamma}{2}$, so that the final solution has the form

$$
z(t)=A e^{(-\gamma / 2) t} e^{i\left(\sqrt{\omega_{0}^{2}-\frac{\gamma^{2}}{4}} t+\alpha\right)}
$$

(You should know what the parameters ω_{0}^{2} and γ are.) [9 marks]
(3.3) Explain what the physical meaning of the real term $e^{(-\gamma / 2) t}$ (in the proposed solution $z(t)$ above) is in terms of the amplitude of the oscillations. [2 marks]
(3.4) Explain how the solution proposed in question 3.2 changes in the case when $\omega_{0}^{2}<\frac{\gamma^{2}}{4}$. Do we still have an oscillatory motion in this case? Explain your answer. [5 marks]
(3.5) The equation that represents forced oscillations is the following:

$$
F_{0} \sin \omega t-b \frac{d x}{d t}-k x=m \frac{d^{2} x}{d t^{2}}
$$

Show that the steady state solution has the form $x(t)=A \cos (\omega t+\phi)$, and find an expression for the amplitude of the oscillation A as a function of ω and ω_{0} (or, in other words, the resonance formula). [6 marks] (Please note: $\omega_{0}^{2}=k / m$.)

Question 4 [17 marks]

(4.1) The wave equation for shallow water gravity waves is

$$
\frac{\partial^{2} h}{\partial t^{2}}=g h_{0} \frac{\partial^{2} h}{\partial x^{2}}
$$

where g is the acceleration of gravity, h_{0} is the water depth and $h(x, t)$ is the water displacement at time t and position x. Show that this wave equation allows for soliton-type solutions of the form

$$
h(x, t)=2 \alpha^{2} \operatorname{sech}^{2}[\alpha(x-v t)],
$$

(where α is a constant parameter, and v is the propagation speed of the wave), and derive the expression for v as a function of g and h_{0}. [9 marks]
Please note: $\operatorname{sech} x=\frac{1}{\cosh x} ; \frac{\mathrm{d}}{\mathrm{d} x} \cosh x=\sinh x ; \frac{\mathrm{d}}{\mathrm{d} x} \sinh x=\cosh x$.
(4.2) The wave equation for capillary waves in shallow waters is

$$
\frac{\partial^{2} h}{\partial t^{2}}=-\frac{h_{0} \sigma}{\rho} \frac{\partial^{4} h}{\partial x^{4}}
$$

where h_{0} is the water depth, σ is the surface tension, ρ is the density of water and $h(x, t)$ is the water displacement at time t and position x. Show that travelling waves of the form

$$
h(x, t)=h(u)
$$

where $u=x-v t$, are in general NOT solutions for the capillary wave equation above, and explain the reason why it is so. [5 marks]
(4.3) Consider the linear wave equation: $\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}=\frac{\partial^{2} y}{\partial x^{2}}$, and prove mathematically that it is linear. [3 marks]

Question 5 [13 marks]

(5.1) A simple harmonic oscillator of amplitude A has a total energy E. Calculate (a) the kinetic energy and (b) the potential energy when the position is one-third of the amplitude. (c) For what values of the position does the kinetic energy equal one-half of the potential energy? [5 marks]
(5.2) Consider an element δx of a guitar string undergoing a wave motion like the one shown in the figure below. Use the appropriate assumptions, equations and explanations in order to show that the energy density ϵ is given by

$$
\epsilon=T\left(\frac{d \psi}{d u}\right)^{2}
$$

where T is the tension in the string, $u=x-v_{p} t$ and $\psi=\psi(x, t)$ is the wave displacement at time t and position x. [8 marks]

