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Question 1 [14 marks]

Waves on a thin, flexible string of mass per unit length ρ and subject to a tension T are governed by the
linear wave equation:

∂2y

∂t2
=
T

ρ

∂2y

∂x2
,

where y(x, t) is the wave displacement at time t and position x, and
T

ρ
= v2.

(1.1) Show that travelling waves of the form

y(x, t) = y(u),

where u = x− vt, may be solutions of the linear wave equation above, and find the two values of v that
make them so. [6 marks]

(1.2) Is the wave function y(x, t) = 4 ln(5x − 7t) a solution of the linear wave equation above? Prove
your answer mathematically, and find the possible value(s) for the speed of propagation of the wave (v)
from your proof. [4 marks]

(1.3) Consider the wave function y(x, t) = x2 + v2t2.
(a) Show that y(x, t) is a solution of the linear wave equation above. [2 marks]
(b) Show that y(x, t) can be written as y(x, t) = f(x + vt) + g(x − vt) and determine the functional
forms of f and g. [2 marks]

Question 2 [16 marks]

(2.1) A sinusoidal wave propagating on a string is described by the wave function

y(x, t) = 0.150 sin (0.80x− 50.0 t)

where x and y are in meters and t in seconds. The mass per unit length of the string is 12.0 g/m.
(a) Calculate the maximum transverse acceleration of an element of this string. [3 marks]
(b) Calculate the maximum transverse force on a segment of the string of length 1.0 cm. [2 marks]
(c) Calculate the tension in the string. [2 marks]

(2.2) Explain what it means mathematically for a wave equation to be defined as linear. [2 marks]

(2.3) Consider the following wave equation:

∂y

∂t
+ 6y

∂y

∂x
+
∂3y

∂t3
= 0 ,

where the wave displacement at time t and position x is given by y(x, t). Is this wave equation linear or
not? Substantiate your answer mathematically and carefully explain your conclusion. [7 marks]

Question 3 [24 marks]

(3.1) Explain in your own words why complex waveforms are important, and why they are used as
solutions of wave equations originating from real physical problems. [2 marks]
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(3.2) The equation below

m
d2x

dt2
+ kx+ bv = 0

describes an harmonic oscillator moving in a resistive environment. Here m is the mass of the oscillator,
k is the spring constant of the spring and b indicates the damping due to friction. Show that a complex
exponential of the form

z = Aei(pt+α)

(where A, α and p are parameters) to solve the equation above. In particular, show that this is the case

for p =
√
ω2
0 −

γ2

4 + iγ2 , so that the final solution has the form

z(t) = Ae(−γ/2)tei(
√
ω2

0−
γ2

4 t+α).

(You should know what the parameters ω2
0 and γ are.) [9 marks]

(3.3) Explain what the physical meaning of the real term e(−γ/2)t (in the proposed solution z(t) above)
is in terms of the amplitude of the oscillations. [2 marks]

(3.4) Explain how the solution proposed in question 3.2 changes in the case when ω2
0 <

γ2

4
. Do we still

have an oscillatory motion in this case? Explain your answer. [5 marks]

(3.5) The equation that represents forced oscillations is the following:

F0 sinωt− b
dx

dt
− kx = m

d2x

dt2
.

Show that the steady state solution has the form x(t) = A cos(ωt + φ), and find an expression for the
amplitude of the oscillation A as a function of ω and ω0 (or, in other words, the resonance formula). [6
marks] (Please note: ω2

0 = k/m .)

Question 4 [17 marks]

(4.1) The wave equation for shallow water gravity waves is

∂2h

∂t2
= gh0

∂2h

∂x2

where g is the acceleration of gravity, h0 is the water depth and h(x, t) is the water displacement at time
t and position x. Show that this wave equation allows for soliton-type solutions of the form

h(x, t) = 2α2 sech2[α(x− vt)] ,

(where α is a constant parameter, and v is the propagation speed of the wave), and derive the expression
for v as a function of g and h0. [9 marks]

Please note: sechx =
1

coshx
;

d

dx
coshx = sinhx;

d

dx
sinhx = coshx.

(4.2) The wave equation for capillary waves in shallow waters is

∂2h

∂t2
= −h0σ

ρ

∂4h

∂x4

where h0 is the water depth, σ is the surface tension, ρ is the density of water and h(x, t) is the water
displacement at time t and position x. Show that travelling waves of the form

h(x, t) = h(u)

where u = x − vt, are in general NOT solutions for the capillary wave equation above, and explain the
reason why it is so. [5 marks]

(4.3) Consider the linear wave equation:
1

v2
∂2y

∂t2
=
∂2y

∂x2
, and prove mathematically that it is linear. [3

marks]
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Question 5 [13 marks]

(5.1) A simple harmonic oscillator of amplitude A has a total energy E. Calculate (a) the kinetic energy
and (b) the potential energy when the position is one-third of the amplitude. (c) For what values of the
position does the kinetic energy equal one-half of the potential energy? [5 marks]

(5.2) Consider an element δx of a guitar string undergoing a wave motion like the one shown in the figure
below. Use the appropriate assumptions, equations and explanations in order to show that the energy
density ε is given by

ε = T

(
dψ

du

)2

,

where T is the tension in the string, u = x− vpt and ψ = ψ(x, t) is the wave displacement at time t and
position x. [8 marks]

50 Sinusoidal waveforms

Fig. 4.2 A travelling wave propagating along a section of a guitar string.

to be constant, being given, respectively, by the ratio of the string’s tension to its
mass per unit length and by the permeability and permittivity of the dielectric
spacer, substitution of the general sinusoidal travelling wave of equation (4.1)
into the capillary wave equation (3.61) yields

v2
p = −h0 σ

ρ
k2. (4.8)

The phase velocity vp hence depends upon the wavenumber k of the sinusoidal
solution – as we saw in Section 3.3 to be the case for the capillary–gravity
and deep-water ocean waves whose wavenumber-dependent phase velocities
are given by equations (3.53) and (3.67). This is an alternative signature of the
phenomenon of dispersion. Only if they are sinusoidal (and hence k is single-
valued) will travelling waves have a definite phase velocity and be solutions to
the wave equation.

We shall consider dispersion further in Chapters 5 and 13, and in Chapter 18
we shall see that it is the cause of the remarkable Kelvin wedge in the wake of
a ship or other watercraft.

4.2 Energy of a wavemotion

We know from everyday experience that a wave motion, be it sound, light or
the displacement waves of the ocean, conveys energy. For the guitar string
of Section 2.2, it is clear that an element of the string undergoing a wave
motion may have a higher energy than when in its relaxed state, by virtue
of both the increased potential energy of the displaced string and the kinetic
energy associated with its motion. In this section, we shall determine these two
components of the wave energy and the rate at which it travels; these specific
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