

DEPARTMENT OF PHYSICS (APK)

MODULE: PHYSICAL SCIENCES FOR FET 2A

CODE: PSFT02A

NOVEMBER EXAMINATION 2016

DATE: 26 NOVEMBER 2016

FACULTY OF SCIENCE

	Student's	Question's
	Mark	Mark
Q1		14
Q 2		22
Q 3		19
Q 4		19
Q 5		15
Q 6		11
m . 1		
Total		100

EXAMINER/MOD	JEKA	TF	UK
--------------	------	----	----

Mr. M Khwanda

Mr. P Molefe

TIME

3 Hours

MARKS

100 MARKS

INSTRUCTIONS: ANSWER ALL THE QUESTIONS IN THE SPACES PROVIDED

NUMBER OF PAGES: 15, INCLUDING COVER PAGE

REQUIREMENTS: SCIENTIFIC CALCULATOR, NO PROGRAMMABLE CALCULATORS

ARE ALLOWED

Student Number							100	
	1	_			1	J	1	
ID Number	2							
Surname and Initial	c•		,					
Contact Number:	5.	S. Francisco						
Venue:						<u> </u>		

1.1 A car moves at a constant speed along a straight line as it approaches a circular turn. In which of the following parts of the motion is the car in equilibrium? Choose the correct answer and
the section of the se
then justify your choice using applicable scientific law(s). (2)
A: As it moves along the straight line towards the circular turn
B: As is going around the circular turn
C: As it moves away from the turn along a straight line
1.2 With the aid of a suitable diagram, show that the recommended speed of the car around a
banked curve is independent of the mass of the car. (6)
is banked at an angle of 17°. A car can travel around curve A without relying on friction at a
speed of 21 <i>m/s</i> . Calculate the speed this car can travel around curve B without relying on friction. (6)

2.3 Starting with an initial speed of 5.00 *m/s* at a height of 0.30 *m*, a 1.50 *kg* ball swings downward and strikes a 4.60 *kg* ball at rest as the drawing shows below.

2.3.1	Using the principle of conservation of mechanical energy, calculate the speed of	f the
	1.50 kg ball just before impact.	(4)
2.3.2	Assuming that the collision is elastic, calculate the velocities of both balls a	after
	collision.	(4)
		-

	2.3.3	Ignoring the effect of air resistance, how high does each ball swing after collision?(4)
-		

2.4 An object A is moving due East, while object B is moving due North. They collide and stick together in a completely inelastic collision. Momentum is conserved. Object A has a mass of 17 kg and a velocity of 8 m/s due East. Object B has the mass of 29 kg and an initial velocity of 5 m/s due North. Calculate the magnitude and direction of the total momentum of the two object system after collision.

-		
Our	action 2: Sound ways and light	F407
Que	estion 3: Sound, waves and light	[19]
3.1	A wave travelling along the negative x-axis is described mathematically by equation $y = 0.17 \sin{(8.2\pi t + 0.54\pi x)}$, where y is the displacement (in meters), seconds, and x is position of a particle in meters. Calculate the speed of the wave.	
94.	97 2 mm 2	
		162 8

3.2	Explain what you understand by the term "Doppler effect".	(1)
3.3	A car is parked 20 <i>m</i> directly south of a railroad crossing from the west, headed directly of at a speed of 55 <i>m/s</i> . The train sounds a short blast of nits 289 <i>Hz</i> horn when it reaches point of 20 <i>m</i> west of the crossing. The speed of sound in air is 343 <i>m/s</i> . Calculate magnitude of the frequency the car's driver hear when the horn blast reaches the car.	s a
		_
		_
5510.		_
	Show that the relation between the magnitudes of the electric and magnetic fields in electromagnetic wave is given by $E = c B$.	an (7)
		- - -

20	
9.	
:	
Que	estion 4: Direct Current Electric Circuits
	[19]
	A -ii
4.1	A circuit consists of two bulbs (A and B) with different resistances connected in series. Bulb
	A has smaller resistance in compared to bulb A. When the switch is ON, all bulbs shine
	(emit light). Use your knowledge of electric fields to answer the following questions:
	4.1.1 Explain what causes the bulbs to shine. (3)
	(5)
200000000000000000000000000000000000000	

er? Explain (2)	4.1.2 Which bulb shines brighter	
		_
nown in the diagram. The potential difference between	Five resistors are connected as sho points A and B is 15 <i>V</i> . Calculate	
4.1Ω \$2.7Ω \$2.4Ω 3.6Ω	Α 3.2 Ω	
tween the points A and B . (4)	4.2.1 the equivalent resistance between	4.

.3 State Kirchhoff's junction rule. 4 Label the diagram and apply Kirchhoff's rules to calculate the magnitude of current in 2 Ω resistor	(
State Kirchhoff's junction rule. Label the diagram and apply Kirchhoff's rules to calculate the magnitude of current in 2 Ω resistor	nagnitude of current in the
State Kirchhoff's junction rule. Label the diagram and apply Kirchhoff's rules to calculate the magnitude of current in 2 Ω resistor	nagnitude of current in the
State Kirchhoff's junction rule. Label the diagram and apply Kirchhoff's rules to calculate the magnitude of current in 2 Ω resistor	nagnitude of current in the
State Kirchhoff's junction rule. Label the diagram and apply Kirchhoff's rules to calculate the magnitude of current in 2 Ω resistor	nagnitude of current in the
Label the diagram and apply Kirchhoff's rules to calculate the magnitude of current in 2 Ω resistor	
Label the diagram and apply Kirchhoff's rules to calculate the magnitude of current in 2 Ω resistor	
Label the diagram and apply Kirchhoff's rules to calculate the magnitude of current in 2 Ω resistor	
2 Ω resistor	nagnitude of current in the
2 Ω resistor	nagnitude of current in the
2 Ω resistor	nagnitude of current in the
2 Ω resistor	agnitude of current in the
1.0Ω ///// 2.0Ω 1.0ν + -	
200 LOV	
*11-	
*11-	

-	
-	
-	
Qu	estion 5: Electromagnetism [15]
5.1	The diagram represents an electromagnet on the left and the permanent magnet on the right Do you think an electromagnet will be repelled or attracted by the magnet? Explain your answer.
	answer. (2)

5.2	The state of the s	
	plane of the paper. The current in each of the wires is $I = 5.6 A$ in the direction	
	an arrow. Using the applicable rule, calculate the magnitude of the net magnetic f	ields at point
	A.	(3)
	↑	
	0.40 m A	
	0.20 m	
	0.20 m	
	B 0.40 m	
	2 0.40 m	
y 		
-		-
-		
-		
-		
5.3	State Lenz's law.	(4)
		(1)
8		
-		

5.4	The diagram shows a permanent magnet approaching a loop of wire. The external circuit is attached to the loop consists of the resistance R, which could represent the filament in the light bulb. Determine the polarity of the points A and B. <i>Hint: Say if point A negative and point B positive or point A positive and point B negative?</i> Explain your answer. (3)
	Magnetic field lines A B R
5.5	A step-down transformer inside a stereo receiver has 330 turns in the primary coil and 25 turns in the secondary coil. The plug connects the primary coil to a 120 V wall socket, and there is a current of 0.83 A in the primary coil while the receiver is turned ON. Connected to the secondary coil are the transistor circuits of the receiver. Calculate: 5.5.1 the voltage across the secondary coil. (2)

6.1 Mention only one experimental evidence that shows that light is: 6.1.1 A wave 6.1.2 A particle	(4)
6.1 Mention only one experimental evidence that shows that light is: 6.1.1 A wave 6.1.2 A particle	
6.1 Mention only one experimental evidence that shows that light is: 6.1.1 A wave 6.1.2 A particle	
6.1 Mention only one experimental evidence that shows that light is: 6.1.1 A wave 6.1.2 A particle	
6.1 Mention only one experimental evidence that shows that light is: 6.1.1 A wave 6.1.2 A particle	_
6.1 Mention only one experimental evidence that shows that light is: 6.1.1 A wave 6.1.2 A particle	
6.1 Mention only one experimental evidence that shows that light is: 6.1.1 A wave 6.1.2 A particle	
6.1.1 A wave 6.1.2 A particle	[11]
6.1.2 A particle	
6.0 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(1)
6.2 What is photoelectric effect?	(1)
	(2)
Sunlight, whose visible wavelength range from 380 nm to 750 nm, is incident on a sodius surface. The work function of sodium is $W_0 = 2.28$ eV. Calculate:	
6.3.1 the maximum kinetic energy KE _{max} (in joules) of the photoelectrons emitted from t	he
surface.	(4)
	_
	_
6.3.2 the range of wavelengths that will cause photoelectrons to be emitted.	(3)
	_

Useful Information

$$v = \frac{2\pi r}{T} \qquad f_o = f_s \left(\frac{1 \pm \frac{v_o}{v}}{1 \mp \frac{v_o}{v}} \right) \qquad \frac{V_s}{V_p} = \frac{N_s}{N_p} \qquad \frac{I_s}{I_p} = \frac{N_p}{N_s}$$

$$E_T = \frac{1}{2}mv^2 + mgh$$
 $P = mv$ $E = hf$ $hf = KE_{max} + W_0$

$$R = \frac{V}{I}$$
 $R_s = R_1 + R_2 + R_3 + \cdots$ $\frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \dots$ $P = IV$

$$B = \frac{F}{/q_o/vsin\theta}$$
 $r = \frac{mv}{/q/B}$ $B = \frac{\mu_o I}{2\pi r}$ $F = ILBsin\theta$

$$\mu_0 = 4\pi \times 10^{-7} \, T. \frac{m}{A}$$
 $g = 9.8 \, m/s^2$ $C = \frac{1}{\sqrt{\epsilon_0 \mu_0}} = 3 \times 10^8 \, m/s$

$$h = 6.62 \times 10^{-34} J. s$$
 $1 eV = 1.6 \times 10^{-19} J$ $u = \epsilon_0 B^2 = \frac{1}{\mu_0} E^2$

$$(\Delta p_y)(\Delta y) \ge \frac{h}{4\pi}$$
 $(\Delta E)(\Delta t) \ge \frac{h}{4\pi}$