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QUESTION A1 follows /… 
 

Section A :  STATISTICAL MECHANICS  
 

 
QUESTION A1 [15] 
 
Consider a system of fixed volume and fixed number of particles placed in a 
heat bath at temperature T . The probability to be in a state r is given by the 
Boltzmann distribution 
 

re
Z

pr
Ε−=  1 β

,    , reZ
r

Ε−∑= β
   

1

Bk T
β =  

 

The mean energy E of the system in the heat bath is given by  ln( )ZE
β

∂
= − ⋅

∂
 

A system consists of N weakly interacting subsystems and each subsystem 
possesses only two energy levels of energies zero and ε, each of which is non-
degenerate.  
 
(a) Make use of the Boltzmann distribution above to calculate the average 

energy of each subsystem. 
 
(b) Hence show that the heat capacity of the combined system is given by the 

well-known Schottky anomaly :  
 

( )
2

2
 where 

 1

y
B

y
B

Nk y eC y
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ε
= =

+   . 

 
(c) Consider the behaviour of C in the low and high temperature limits and plot 

C as a function of y.   
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QUESTION A2 [15] 
 
One possible means of obtaining  fusion energy is to implode spherical capsules 
containing heavy hydrogen by irradiating them with high power lasers.  For 
fusion to occur the implosion core needs to reach electron temperatures of the 
order of ~1 keV (~10 million K) and the electron density needs to be of the 
order of 1033 m-3.  Do we need to use Fermi-Dirac (quantum) statistics to 
describe the electrons, or are Maxwell-Boltzmann (classical regime) statistics 
sufficient ?   Give two sets of explanations supported by calculations to justify 
your answer. Recall that the classical regime requires that the energy levels are 
sparsely occupied.  
 [Hints :  Take care of using MKS units in the calculations, also calculate the 
Fermi energy and use the figure provided below as a guide]  
 
Planck’s constant   h = 6.626×10-34 J.s  = 4.136×10-15 eV.s 
Molar gas constant R = 8.314 J.K-1.mol-1  
Boltzmann’s constant   kB = 8.617×10-5 eV/K 

Electron mass  me = 9.11×10-31 kg 

1eV = 1.602 ×10-19 J 

dBde-Broglie wavelength 
3 B

h
m k T

λ =  

2
2 2 33

2F
NE

m V
π 

=  
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QUESTION A3 [15] 
 
Depart from the partition function for a perfect quantal gas 

 

1, 2..
( , , ) exp{  }r r

n n r
Z T V N nβ ε= −∑ ∑  , 

 
where the summation refers to all possible sets {n1 , n2, n3 ….} of the 
occupancies of single-particle energy states {ε1 , ε2, ε3, ….}. 
 
(a)  Derive an expression for the partition function phZ  and an expression for the 

mean occupation number in  for photons radiated in a Blackbody cavity at 
temperature T.   

(b)  Furthermore assume the relation  ln( )1 
 

ph
i

i

Z
n

β ε
∂

= −
∂

 to find Planck’s result for  

the mean occupation number  
 

1
1iin

eβε=
−  

 
in terms of 1( )

Bk Tβ =  and  iε .   Fully motivate the physics behind your 

calculations, especially in obtaining  phZ .   
 
(c) A photon has energy and momentum  and  / ,p cε ω ε= =   respectively.   

The general expression for the density of momentum states is   

( )
2

3

2 4V p dpf p dp
h
π×

= .  Describe qualitatively, the steps you would 

follow,  to arrive at Planck’s radiation  law  for the energy density in the 
cavity :  

 

( )
3

2 3( , )
exp( ) 1

dU T d
c

ω ωω ω
π β ω

=
−





 . 

 
Note , that a detailed derivation of this equation is NOT required.  
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QUESTION A4 [15] 
 
If a system of chemical potential µ , possesses a sequence of energy states EN1 ≤ 
EN2 ≤ EN3 ≤ ….for any given number of particles N,  the Gibbs (grand canonical) 
distribution is given by 

( )exp  Nr
Nr

E N
P

β µ − − =
Ζ

  , 

 
where PNr is  the probability that the system is in energy state ENr  and the 
number of particles N can vary due to exchange with the “bath”. 

The grand canonical partition function is  ( )
0 1

exp Nr
N r

E Nβ µ
∞ ∞

= =

 = − − ∑∑Ζ , 

 where   andi Nr i i
i i

N n E n ε= =∑ ∑ and the subscript i refers to single particle 

energy  states εi .    Applying  the Gibbs formalism to a perfect quantum gas 
factorizes the Gibbs grand canonical partition function and probability 
distribution as follows :  

 0  0
 ,   ( )i Nr i i

i i
z P p n

∞ ∞

= =
= =∏ ∏Ζ  , 

where    

( )
( ) and  ( )

i i
i i

i

n
n

i i i
n i

ez e p n
z

β ε µ
β ε µ

− −
− −= =∑ . 

(a)  Assume these results  and through appropriate reasoning find expressions 
for zi (“single-level partition function”), for both Fermi-Dirac and Bose-
Einstein statistics. 

(b)  Using the following relation for  the mean occupation number of the i-th 
single particle state given by :  

T,V

ln z1 i
in

β µ
 ∂

=  ∂ 
 , 

 
derive furthermore an expression for in  for both Fermi-Dirac and Bose-
Einstein quantal gases (i.e., the distribution function expressed in terms of 

  , µε i and β ). 
(c)  Consider the permitted µ values for the two cases and briefly (perhaps by 

way of a diagram)  indicate the behaviour of these expressions in the limit  
T  0 K if the single particle state of lowest energy is ε0 .                 
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QUESTION A5 [20 marks available, but 15 or more is 100 %] 
 
For a Bose gas the number of momentum states between p and p + dp  is :  

( )
2

3

4V p dpf p dp
h
π

= . 

The dispersion relation and Bose-Einstein distribution, respectively, are  : 
 

2 1; .
2 exp[ ( )] 1
p n
m εε

β ε µ
= =

− −   .
 

 
(a)  Suppose the Bose gas has N particles.   Derive and explain why the 

following expression is an indication of  the number of  bosons in the 
excited energy states ε>0, if the ground state  is considered as ε=0 : 
 

1
23

2
3

0

2 (2 )
exp[ ( )] 1exc

V dN m
h
π ε ε

β ε µ

∞ 
 =

− −  
∫ . 

 
(b)  Now below the Bose-Einstein temperature TC when some particles have 

condensed into the ground state, µ → 0. The internal energy  E of the system 
is due to  those particles in the excited state.  
 

Show that   
3 5 5

2 2 2
3

2 (2 ) ( ) 1.78 , . . ,B
VE m k T i e E T

h
π = × ∝  

. 

[ Hint :  Use the density of energy states f(ε)dε obtained from f(p)dp above, 
similar to finding  Nexc ] 

 

(c)  Using   
3

2

2

2 2.61B Cmk TN
V h

π = × 
 

  derived in class from the definition of  TC  

above,  show that the heat capacity of the Bose gas at T < TC  is  
3

22 1.78 5
2.61 2V B

C

TC Nk
Tπ
 

=  
 

. 

 

It is given that  
3

2

0

1.78
1x

x dx
e

∞

=
−∫  
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Section B :  SOLID STATE PHYSICS   
 
 

QUESTION B1    [15] 
 
(a)    A simple cubic lattice with unit cell length a is shown below.  Obtain the 

Miller indices for the following diffraction planes and calculate the spacing 
between the planes :  

 
     (i)                                                              (ii)  
 
 
 
 
 
(b)  Consider a basis specified by vectors  r1 , r2 … rn  relative to some space 

lattice.    The reciprocal lattice of the underlying space lattice is G.   The 
structure  factor is defined by  

.( ) ( )  where ( )  is the form factor.jiG r
j j

j
S G f G e f G=∑

 

 


 

(i)   Explain what the form factor represents. 
(ii)  The structure factor impacts on the scattered intensity.  Explain , with the 

aid of diagrams, how and why this arises. 
(iii)  The fcc lattice may be considered as a simple cubic lattice with unit cell 

length a and basis vectors r1 = (0,0,0)a  r2=(½,½,0)a  r3= =(½,0, ½)a  r4= 
=(0,½,½,)a .   Write out the expression for the reciprocal lattice points G 
in terms of the Miller indices (h,k,l) and the conventional unit vectors.   

(iv) Then write out the expression for the structure factor.  Consider what is 
its value when the indices (h,k,l) are all even or all odd. Then consider 
the case when the indices are a mixture of odd and even values.  What 
can you then conclude about the effect of the structure factor on the 
resultant x-ray diffraction pattern for an fcc metal like Cu.  

Useful in formation  :  einπ is 1if n is even and -1 if n is odd. 

 

 

k  

j  

i  
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QUESTION B2 [15] 
 
 
Lattice vibrations are considered for a linear chain of identical masses M  
separated by a distance a from each other.  Each mass is connected to its first 
and second nearest–neighbours effectively by springs of spring constants 1K  and 

2K  ,  respectively, as sketched below.  Longer range interactions are neglected. 
  

   
 
 
The atoms are separated by a  distance a at equilibrium.   Write down the 
equation of motion for the n-th atom in terms of displacements  Un, Un-1, Un-2 , 
Un+1, Un+2  of the atoms from their equilibrium positions. Use a solution 
Un=Aexp[i(kxn

o-ωt)] with  xn
o = na the equilibrium position of the thn  atom and 

derive the following dispersion relation for this chain: 
 

). cos1( ) cos1( 21
2 kaHKGkaFKEM −+−=ω  

 
The numerical values of HandGFE   ,, should follow from your calculation. 
  

  

Information :   
cos( )

2

sin( )
2

i i

i i

e e

e e
i

θ θ

θ θ

θ

θ
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−
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QUESTION B3 [15] 
 
The energy of lattice vibrations in a crystal is given by  
 

0

1    ( ) d
2 1

k TB
E g

e
ω

ωω ω ω
∞ 
 = +
 − 
∫





  

 
and the density of energy or frequency states in three-dimensions is given as   
 

ωπ
ω

 d
 d  

2
V  )( 2

2 kkg =  ,  

 
 where k is the wave vector. 
 
(a)  Discuss the behaviour of the phonon system at low temperatures and show, 

with motivation, that  











+= 3

T
3

L
2

2 2  1 
2

)(
vv

Vg
π
ωω  

 
where subscripts L and T refer to longitudinal and transverse acoustic 
modes. 

  
(b)  Using this expression for )(ωg show that the heat capacity at low 

temperatures is given by 
3

2
3 3

L T

2 1 2       .
15 v v

B
B

k TVC kπ
   = +   

   

 

 
Note that in the expressions for E and C, kB is Boltzmann’s constant. 

 

It is given that  
15

 
1

 43

0

π
=

−∫
∞

xe
xx d

. 
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QUESTION B4   [15]   
 
The following  equation relates to the probability amplitudes  cn(t), cn-1 and cn+1 
associated with an extra electron at the positions of covalently bonded atoms n, 
n-1 and n+1 , respectively, on a linear chain with lattice spacing a : 
 

1 1
( )n

n n n
dc ti Bc Ac Ac

dt − += − − . 

 
Where  |cn(t)|2   is the probability of finding  the electron in an energy level 
(stationary state) B on atom n.   A is the coupling (overlap integral) involving the 
orbitals on neighbouring atoms.    
 
(a)  Using an appropriate travelling wave solution for the electron, show that it 

leads to a dispersion relation 2 cos( )B A kaε = − . Sketch the dispersion 
relation ε  versus k for  A > 0 .  Explain what is the bandwidth and 
rationalize how it has evolved from the energy levels B of isolated atoms.   

 
(b)  Furthermore show that near the bottom of the band the dispersion relation is 

parabolic and highlight what is the effective mass of carriers in the band.  
Indicate why we refer to this as the tight-binding approximation.  

 
(c ) From what you have sketched in (a) , an energy gap is opened up at k = π/a.  

Briefly explain why this is the case for this periodic linear chain. 
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QUESTION B5   [15] 
 
 
(i)  Explain what it means to add donor impurities to a semiconductor like Si and 

give an example of such donor impurities.  Then explain what it means to 
add acceptor impurities to Si and give an example of  such acceptors.  Draw 
a fully labelled  E versus k dispersion diagram for the doped semiconductor 
to illustrate what is the effect of the above mentioned doping.  

 
(ii)  Doping as mentioned above has the effect of introducing hydrogenic type 

atoms into the host Si lattice.  Explain what is meant by this.  Using the 
information below , calculate typical ionization energies for donor impurities  
if the dielectric constant of Si is  εr = 12 and the effective mass me is one-
tenth of the bare electron mass m . 

 
(iii) Based on your calculations in (ii) comment on the effect of room 

temperature, 300 K, on the electrical properties of  doped Si. 
 
 
For a hydrogenic-type  atom  the energy level scheme and radii of Bohr orbits 
are given by  
 

( )

24

2 2 2
0

2 2
0

2

1 1

-5

1
2 4

4

where for the ground state,  1, in hydrogen

 -13.6  and  0.53

8.62 10  / K 

e
n

r

r
n

e

o

B

m eE
n

n
r

m e
n

E eV r A

k eV

ε πε

ε πε

 
=  

 

=

=

= =

= ×
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