SURNAME:_____ INITIALS ____

STUDENT NUMBER:_____

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS			Student's Mark	Question's Mark
MODULE:	PHYE0A2	Q1		15
CAMPUS	АРК	Q 2		10
		Q 3		20
EXAM	09 June 2017	Q 4		10
		Q 5		15
		Q 6		20
EXAMINERS				
Dr. D. Britz		Total		90
MODERATOR				

MODERATOR Prof. H. Winkler

DURATION 150 min

MARKS 90

THIS PAPER CONSISTS OF 20 PAGES INCLUDING THE COVER PAGE

INSTRUCTIONS: Answer ALL questions IN SPACES PROVIDED **NO PENCIL**

Question 1 [14]

1.1) Using the kinematic definitions as your point of departure, derive the below expression governing the displacement of a particle under constant acceleration as a function of time. Indicate all relevant arguments in your derivation

$$\Delta x = v_{x,i}t + 1/2(a_x t^2)$$

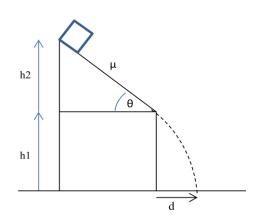
1.2) Starting from the definition of inertia show how this leads to the conservation of linear momentum in a closed system.

[3]

1.3) A person on a bicycle moves along a straight road from his front gate to the shops at a constant speed of 8 m/s. At the shops he then realises that he forgot his wallet at home and races back to fetch it, travelling at a constant speed of 15 m/s. What is his average speed for the journey to the shop and back? What is his average velocity for the same journey?

[3]

 1.4) The <i>x</i>-component of the velocity of a car changes from -2 m/s x̂ to +5 m/s x̂ in 5 seconds (a) Is the car travelling in the positive or negative <i>x</i> direction? 	, find: [1]
(b) Does Δv point in the positive or negative <i>x</i> direction?	[1]
(c) Is the <i>x</i> component of the acceleration positive or negative?	[1]
(d) Is the car speeding up, slowing down or both?	[1]


Question 2 [16]

2.1) Show that near the earth's surface the conservation of total mechanical energy holds for an object moved through an arbitrary vertical distance.

2.2) A block of mass m is at rest at the top of an incline (angle θ measured with respect to the horizontal) shown in the figure below. The surface of the incline is rough with a coefficient of friction μ .

(a) Using conservation of energy find the speed of the block m at the bottom of the incline.

[2]

PHYS0A1 exam 08 June 2016	Do not write in the margin	
(b) With what speed does the mass hit the ground?	[2]	
(c) How far away from the end of the incline does the block land (the magnitud	e of d)? [3]	

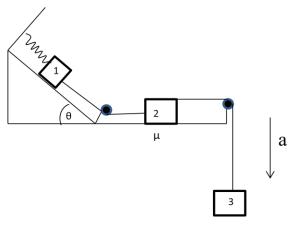
PHYS0A1 exam 08 June 2016

Do not write in the margin

2.3) Two 1 kg carts are joined together and are initially moving to the right at 2 m/s on a horizontal frictionless track. The join contains explosives which can be detonated remotely. The explosion creates 18 J of energy, half of which is transformed into internal energy (noise, heat *etc.*). The remaining energy pushes the carts apart. What are the velocities of the two carts after the explosion?

[5]

QUESTION 3 [23]


3.1) Starting with the idea that a change in an object's momentum with respect to time is caused by the vector sum of all forces acting on the object, derive:

$$\sum F = ma$$

[3]

3.2) Three masses are connected as shown in the figure below. The direction of the acceleration of mass 3 is shown. The rope connecting the masses is inelastic and the pulleys have no mass and are frictionless. Mass 2 is on a rough surface with a coefficient of friction μ. When the spring connected to mass 1 has been stretched a distance d from its equilibrium position (not stretched), what is the acceleration of the system?

[6]

3.3) Show that the work done by a non-dissipative, *spatially dependent* force is given by:

$$W = \int_{xi}^{xf} F_x dx$$

3.4) Use the equation in (3.3) to show that the work done by a spring is: $\frac{1}{1}$

$$W = \frac{1}{2}k(x_f^2 - x_i^2)$$

[3]

3.5) Show that the maximum height reached by a projectile having an initial velocity v_i launched at an angle θ with respect to the horizontal, is given by:

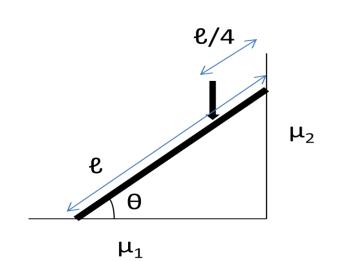
$$h = \frac{v_i^2 (\sin \theta)^2}{2g}$$

PHYS0A1 exam 08 June 2016

Do not write in the margin

[3]

3.6) A disk P (inertia = 0.4 kg) moves with an unknown velocity along a smooth horizontal surface and collides with a disk Q (inertia = 0.7 kg) which is at rest. After the collision the two slightly deformed disks move apart (without spinning) with the following velocities: P: $v_f = 1.4 \cos(20^\circ) \hat{x} + 1.4 \sin(20^\circ) \hat{y}$ and Q: $v_f = 0.96 \cos(50^\circ) \hat{x} - 0.96 \sin(50^\circ) \hat{y}$.


(a) What is the inertial velocity of disk P?

QUESTION 4 [23]

4.1) Derive the expression for centripetal acceleration (*i.e.* $a_c = \frac{v^2}{r}$), stating clearly the logic used.

4.2) Derive an expression for the torque applied to a point-like object, with respect to the particle's rotational acceleration. Show all appropriate figures.

4.3) The figure below represents a ladder (length ℓ) which is leaning on a wall at an angle θ with respect to the floor. The vertical arrow located at a distance $\ell/4$ from the top of the ladder represents the location of a man, whose inertia is 80 kg. If the floor and the wall have different coefficients of friction (μ_1 and μ_2), what is the maximum angle θ at which the ladder will not slip? [6]

4.4) The tub of a washing machine undergoes a spin cycle, starting from rest and gaining angular speed at a constant rate for 8 s. After these 8 s the angular speed is 5 rev/s. Load-shedding occurs at this point and the tub smoothly slows down to rest in 12 s. How many revolutions does the tub go through since starting?

[3]

4.4) A 70 kg woman is standing on the edge of a stationary circular turntable whose radius is 3 m. The turntable has an inertia of 400 kg.m². If the woman walks at a linear speed of 3 m/s in a clockwise direction, find the angular speed of the turntable.

[3]

4.5) State Kepler's laws of planetary motion.

Question 5 [17]

5.1) Give the general solution for the displacement of a particle undergoing simple harmonic motion and derive the expressions for its velocity and acceleration.

[2]

[3]

PHYS0A1 exam 08 June 2016

Do not write in the margin

- 5.2) A travelling wave is described by $f_1(x,t) = A \sin(kx \omega t)$ when moving to the right. If a wave with the same wavelength and frequency is approaching from the left then find:
 - (a) The equation of this wave travelling to the left [1]
 - (b) Show how this combination produces standing waves and find the condition for the location of the nodes. You may use the following: $\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$ [4]

5.4) (a) For a non-compressible fluid with a laminar flow, derive the expres conservation of matter, the so called "continuity equation".	
conservation of matter, the so caned continuity equation .	[3]
(b) Derive Bernoulli's equation including a sketch, stating the logic bel every step.	hind each and [7]

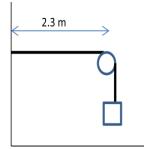
Question 6 [18]

6.1) (a) What is the period of a simple pendulum on the moon if the length of the string is 0.5 m? Given: moon mass = 7.3×10^{22} kg and moon radius = 1.74×10^{6} m

[2]

[1]

PHYS0A1 exam 08 June 2016


(b) How does this compare to the period of this pendulum on the earth?

6.2) A geosynchronous orbit implies that a satellite remains at a fixed point above the earth's surface at all times as the earth rotates. Show that the height required to achieve this is

$$(r_e + h)^3 = Gm_e \left(\frac{T}{2\pi}\right)^2$$
[4]

6.2) A cord runs over a massless pulley which is 2.3 m away from the wall. One end of the cord is attached to a wall, while the other end is connected to a mass, as in the figure below. The cord has a mass per unit length $\mu = 1.3$ g/m. What is the mass of the block if the third harmonic of the cord (standing wave) vibrates with a frequency of 550 Hz?

6.3) A pipe with an inner diameter of 15 mm carries water with a flow rate of 750 mm/s. The inner diameter then narrows from 15 mm to 10 mm. Ignore the viscosity of the water. Find the pressure difference between the 10 and 15 mm diameter pipes.

PHYS0A1 exam 08 June 2016

Do not write in the margin

6.4) Two speakers simultaneously emit a note of wavelength λ . The speakers are separated by a distance of $10\lambda/3$ m. If a microphone is moved along the line between the speakers' centres, at what positions will the microphone detect a maximum and minimum in the sound intensity?

-----End of paper----