Question 1 [24 marks]

(1.1) Consider a thin, flexible string of mass per unit length ρ and subject to a tension T. By considering the net force acting on an element of the string, derive the wave equation governing its transverse motion

$$
\frac{\partial^{2} y}{\partial t^{2}}=\frac{T}{\rho} \frac{\partial^{2} y}{\partial x^{2}}
$$

where $y(x, t)$ is the wave displacement at time t and position x, and $\frac{T}{\rho}=v^{2}$. Please note: Explain all steps and symbols used, and make use of a diagram. [6 marks]
(1.2) Show that travelling waves of the form

$$
y(x, t)=y(u)
$$

where $u=x-v t$, may be solutions of the linear wave equation above, and find the two values of v that make them so. [6 marks]
(1.3) Show that the linear wave equation in question (1.1) has a sinusoidal wave solution of the form

$$
y(x, t)=a_{0} \cos (k x-\omega t+\phi)
$$

and find the relationship between the parameters v, k and ω which makes it so. [3 marks]
(1.4) Consider the wave function $y(x, t)=x^{2}+v^{2} t^{2}$.
(a) Show that $y(x, t)$ is a solution of the linear wave equation in question (1.1). [2 marks]
(b) Show that $y(x, t)$ can be written as $y(x, t)=f(x+v t)+g(x-v t)$ and determine the functional forms of f and g. [2 marks]
(c) Repeat parts (a) and (b) for the function $y(x, t)=\sin (x) \cos (v t)$. [5 marks]

Question 2 [15 marks]

(2.1) Consider an element δx of a guitar string undergoing a wave motion like the one shown in the figure below. Use the appropriate assumptions, equations and explanations in order to show that the energy density ϵ is given by

$$
\epsilon=T\left(\frac{d \psi}{d u}\right)^{2}
$$

where T is the tension in the string, $u=x-v_{p} t$ and $\psi=\psi(x, t)$ is the wave displacement at time t and position x. [7 marks]

2.2 Write down the differential equation that describes the motion of a simple harmonic oscillator with spring constant k and mass m. Show that a generic exponential function can be a solution of this equation if and only if it is a complex exponential. [3 marks]
2.3 Show that this expression: $x(t)=C_{1} e^{(+i \omega t)}+C_{2} e^{(-i \omega t)}$ (where $\omega=\sqrt{k / m}$) is a solution of the simple harmonic differential equation you wrote in question 2.2 if and only if $C_{1}=C_{2}$. [5 marks]

Question 3 [14 marks]

The wave equation governing the transverse motion for a skipping rope is the following:

$$
M \frac{\partial^{2} y}{\partial t^{2}}=W \frac{\partial^{2} y}{\partial x^{2}}-\gamma \frac{\partial y}{\partial t}
$$

where M is the linear mass density, W is the tension in the string, γ is a damping coefficient and $y(x, t)$ is the wave displacement at time t and position x.
(3.1) Show that the following complex exponential waveform

$$
y(x, t)=a \exp i(k x-\omega t)
$$

(where i is the imaginary unit defined as $i=\sqrt{-1}$, and a is a constant) can be a solution of the wave equation above, provided that the following condition holds: $k^{2} W=\omega^{2} M+i \gamma \omega$. [4 marks]
(3.2) Assuming ω to be complex and k to be real, solve the equation $k^{2} W=\omega^{2} M+i \gamma \omega$ for ω and calculate the expressions for the real and the imaginary part of ω assuming that $\gamma \ll k \sqrt{W M}$. At the end of this derivation show that the complex exponential waveform above can be re-written as

$$
y(x, t)=a \exp i\left(k x-\omega_{0} t\right) \exp \left(-\frac{\gamma}{2 M} t\right)
$$

where $\omega_{0}=k \sqrt{\frac{W}{M}} .[10$ marks]

Question 4 [15 marks]

(4.1) The capillary-gravity wave equation for waves in shallow water is given by the following:

$$
\frac{\partial^{2} h}{\partial t^{2}}=g h_{0} \frac{\partial^{2} h}{\partial x^{2}}-\frac{h_{0} \sigma}{\rho} \frac{\partial^{4} h}{\partial x^{4}}
$$

where g is the acceleration of gravity, h_{0} is the water depth, σ is the surface tension, ρ is the density of water and $h(x, t)$ is the water displacement at time t and position x. Show that a sinusoidal waveform $h(x, t)=h_{1} \sin (k u)$ (where $u=x-v t$) may be a solution of this wave equation, and find the expression for v as a function of k that makes it so. [5 marks]
(4.2) The Korteweg - de Vries wave equation:

$$
\frac{\partial \psi}{\partial t}+6 \psi \frac{\partial \psi}{\partial x}+\frac{\partial^{3} \psi}{\partial x^{3}}=0
$$

describes the motion of a soliton, i.e. a single wave pulse ψ that maintains its shape while it travels at constant speed. Show that the travelling wave pulse (with propagation speed c) given by the following:

$$
\psi(x, t)=2 \alpha^{2} \operatorname{sech}^{2}[\alpha(x-c t)]
$$

may be a solution of the Korteweg - de Vries wave equation, and find the particular values of the parameter α that make it so. [10 marks]

Please take note of the following:
$\operatorname{sech} x=\frac{1}{\cosh x} ; \frac{\mathrm{d}}{\mathrm{d} x} \cosh x=\sinh x ; \frac{\mathrm{d}}{\mathrm{d} x} \sinh x=\cosh x$.

Question 5 [22 marks]

(5.1) Explain what it means mathematically for a wave equation to be defined as linear. [2 marks]
(5.2) Consider the linear wave equation:

$$
\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}=\frac{\partial^{2} y}{\partial x^{2}}
$$

and prove mathematically that it is indeed linear. [4 marks]
(5.3) Consider the following wave equation:

$$
\frac{\partial y}{\partial t}+y \frac{\partial y}{\partial x}+\frac{\partial^{3} y}{\partial t^{3}}=0
$$

where the wave displacement at time t and position x is given by $y(x, t)$. Is this wave equation linear or not? Substantiate your answer mathematically and carefully explain your conclusion. [7 marks]
(5.4) A simple harmonic oscillator of amplitude A has a total energy E. Calculate (a) the kinetic energy and (b) the potential energy when the position is one-third of the amplitude. (c) For what values of the position does the kinetic energy equal one-half of the potential energy? (d) Are there any values of the position where the kinetic energy is greater than the maximum potential energy? Explain your answer. [9 marks]

