FACULTY OF SCIENCE

NUMBER OF PAGES: 4 PAGES INCLUDING THIS ONE AND THE INFORMATION SHEET

INSTRUCTIONS: Answer all the questions.

Explanations are necessary!
Question 1 [22]
(1a) Derive the first order correction to the energy of the eigenvalues in time-independent perturbation theory.
(1b) Consider a delta-function bump in the centre of the infinite square well:
$H^{\prime}=\alpha \delta(x-a / 2)$,
where a is the width of the well and δ is a constant. Find the first-order correction to the allowed energies. Explain why the energies are not perturbed for even n.
(1c) Show that in two-fold degenerate perturbation theory the energies are given by:
$E_{ \pm}^{1}=\frac{1}{2}\left[W_{a a}+W_{b b} \pm \sqrt{\left(W_{a a}-W_{b b}\right)^{2}+4\left|W_{a b}\right|^{2}}\right]$,
where $W_{i j} \equiv\left\langle\psi_{i}^{0}\right| H^{\prime}\left|\psi_{j}^{0}\right\rangle, \quad i, j=a, b$. and H^{\prime} is the perturbation to the Hamiltonian.
(1d) Show that the spin-orbit interaction perturbation to the Hamiltonian $\left(H=\left(\frac{e^{2}}{8 \pi \epsilon_{0}}\right) \frac{1}{m^{2} c^{2} r^{3}} \mathbf{S} \cdot \mathbf{L}\right)$ does not commute with the orbital angular momentum. (Hint: you will need the commutation relations for angular momentum).

Question 2 [10]
(2a) Derive Ehrenfests theorem for a time independent operator.
(2b) Use this result to derive the quantum mechanical version of the classical equation $\frac{\partial \mathscr{H}}{\partial p_{i}}=\dot{q}_{i}$, where q_{i} is a position coordinate.

Question 3 [13]
(3a) Use the path integral recipe to show that a 1 g particle will follow a classical trajectory, whereas an electron's trajectory is not well defined. (Hint: consider two paths, one of which is the classical one).
(3b) Show that the integral that results when one exactly evaluates the free-particle propagator is,
$\lim _{N \rightarrow \infty} A^{\prime} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \exp \left[-\sum_{i=0}^{N-1} \frac{\left(y_{i+1}-y_{i}\right)^{2}}{i}\right] d y_{1} \cdots d y_{N-1}$
where
$A^{\prime}=A\left(\frac{2 \hbar \varepsilon}{m}\right)^{(N-1) / 2}$.
You should break the time interval up into steps and at each time insert a complete set of positions.
(4a) Determine the translation operator $T(\varepsilon)$ to first order in ε, in the passive transformation picture.
(4b) Show that time translational invariance leads to the conservation of energy.
(4c) Show that $\Pi=\Pi^{-1}$ and that the eigenvalues of Π are ± 1, where Π is the parity operator. You may assume that $\Pi^{2}=I$.
(4d) Show that the requirement for a quantum system to have time-reversal symmetry is that the Hamiltonian must be real.

Question 5 [14]
(5a) The action of the rotation operator on position eigenkets is defined as,
$U[R]|x, y\rangle=\left|x \cos \phi_{0}-y \sin \phi_{0}, x \sin \phi_{0}+y \cos \phi_{0}\right\rangle$
(i) To first order, prove that,

$$
\begin{equation*}
\langle x, y| I-\frac{i \varepsilon_{z} L_{z}}{\hbar}|\psi\rangle=\psi\left(x+y \varepsilon_{z}, y-x \varepsilon_{z}\right) \tag{6}
\end{equation*}
$$

(ii) Now show that this leads to,

$$
\begin{equation*}
L_{z}=X P_{y}-Y P_{x} \tag{4}
\end{equation*}
$$

(5b) Write down the transformation equation for an infinitesimal rotation of X in the passive picture. Use this to show that,
$\left[X, L_{z}\right]=-i \hbar Y$

END of QUESTIONS

INFORMATION SHEET

$i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}+V \Psi$
$\left[r_{i}, p_{j}\right]=-\left[p_{i}, r_{j}\right]=i \hbar \delta_{i j}, \quad\left[r_{i}, r_{j}\right]=\left[p_{i}, p_{j}\right]=0$
$\left[L_{x}, L_{y}\right]=i \hbar L_{z} \quad, \quad\left[S_{x}, S_{y}\right]=i \hbar S_{z}$
For operators: $[\Omega, \Lambda \theta]=\Lambda[\Omega, \theta]+[\Omega, \Lambda] \theta$ and $[\Lambda \Omega, \theta]=\Lambda[\Omega, \theta]+[\Lambda, \theta] \Omega$
Ehrenfest's theorem: $\frac{d}{d t}\langle\Omega\rangle=\left(\frac{-i}{\hbar}\right)\langle[\Omega, H]\rangle$
$\int \sin ^{2}(a x) d x=\frac{x}{2}-\frac{\sin (2 a x)}{4 a}$
$\int \sin (m x) \sin (n x) d x=\left(\frac{\sin [(m-n) x]}{2(m-n)}-\frac{\sin [(m+n) x]}{2(m+n)}\right)$
$\hbar=1.05457 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
Wavefunctions of the infinite square well: $\psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi}{a} x\right)$
$a=\frac{4 \pi \epsilon_{0} \hbar^{2}}{m_{e} e^{2}}=\frac{\hbar}{\alpha m_{e} c}=5.29177 \times 10^{-11} \mathrm{~m}$
$m_{e}=9.10938 \times 10^{-31} \mathrm{~kg}$
$m_{p}=1.67262 \times 10^{-27} \mathrm{~kg}$
$\delta\left(x-x^{\prime}\right) \equiv \lim _{\Delta \rightarrow 0} \frac{1}{\left(\pi \Delta^{2}\right)^{1 / 2}} \exp \left[\frac{\left(x-x^{\prime}\right)^{2}}{\Delta^{2}}\right]$
Fresnel integrals: $\int_{0}^{\infty} \cos \left(t^{2}\right) d t=\int_{0}^{\infty} \sin \left(t^{2}\right) d t=\sqrt{\frac{\pi}{8}}$
Gaussian integral: $\int_{-\infty}^{\infty} x^{2} e^{-\alpha x^{2}} d x=\frac{1}{2 \alpha}\left(\frac{\pi}{\alpha}\right)^{1 / 2}$
$e^{-a x}=\lim _{N \rightarrow \infty}\left(1-\frac{a x}{N}\right)^{N}$
Taylor series: $f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{(3)}(a)}{3!}(x-a)^{3}+\cdots=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$
Taylor series for $e^{x}: 1+\frac{x^{1}}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
$\int \mathscr{D}[x(t)]=\lim _{\substack{\varepsilon \rightarrow 0 \\ N \rightarrow \infty}} \frac{1}{B} \int_{-\infty}^{\infty} \iint \cdots \int_{-\infty}^{\infty} \frac{d x_{1}}{B} \cdot \frac{d x_{2}}{B} \cdots \frac{d x_{N-1}}{B}$ where $B=\left(\frac{2 \pi \hbar \varepsilon i}{m}\right)^{1 / 2}$
$\int_{a}^{b}\left\langle x \mid x^{\prime}\right\rangle\left\langle x^{\prime} \mid f\right\rangle d x^{\prime}=\langle x| I|f\rangle=\langle x \mid f\rangle$
For the hydrogen atom: $\left\langle\frac{1}{r}\right\rangle=\frac{1}{n^{2} a} ;\left\langle\frac{1}{r^{2}}\right\rangle=\frac{1}{\left(l^{2}+1 / 2\right) n^{3} a^{2}} ;\left\langle\frac{1}{r^{3}}\right\rangle=\frac{1}{l(l+1 / 2)(l+1) n^{3} a^{3}}$
Bohr energies of hydrogen: $E_{n}=-\left[\frac{m}{2 \hbar^{2}}\left(\frac{e^{2}}{4 \pi \epsilon_{0}}\right)^{2}\right] \frac{1}{n^{2}}=\frac{E_{1}}{n^{2}}$

