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Question 1 [22]

(1a) Give an example of a process in which no heat is added to a system, but its tempera-
ture increases. Then give an example of the opposite: a process in which heat is added to a
system but its temperature does not change. [2]

Do not write
in the margins∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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(1b) Calculate the average volume per molecule for an ideal gas at room temperature and
at atmospheric pressure. Use this to work out the average distance between molecules.

[4] ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(1c) For an ideal gas of one molecule in a smooth cylinder of volume V , with a piston at
one end, show that:

1. the average pressure is given by: P =
mv2x
V

. [6]

2. From this derive an expression for the average translational kinetic energy of a large
number of identical molecules. [4] ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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(1d) Derive the expression for the work done when compressing an ideal gas isothermally.
[4] ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1e) Explain why an adiabat on a pressure-volume graph starts on one isotherm and ends
on another. [2]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Question 2 [26]

(2a) Explain the following terms, giving a suitable example for each:

(i) microstate [1]

(ii) macrostate [1]

(iii) multiplicity [1]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2b) Derive an expression for the multiplicity of a two-state system, such as a set of coins.
Explain your reasoning clearly. [7]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2c) Derive a formula for the multiplicity of an Einstein solid containing a large number of
oscillators and energy units, in the high-temperature limit. [8]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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(2d) Suppose that we have two different monoatomic ideal gases, A and B, each with the
same energy, volume and number of particles. They occupy the two halves of a chamber,
separated by a partition, as shown in the below figure. Calculate the entropy increase if the
partition is removed. [4]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2e) Two Einstein solids share 40 units of energy. Solid A has 15 oscillators and solid B has
20 oscillators.

(i) How many possible macrostates are there? [1]

(ii) What is the probability of finding all the energy in A? [3]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Question 3 [12]

(3a) Using the figure below (describing two weakly coupled Einstein oscillators A and B),

give three arguments that lead to the definition of temperature as T ≡
(
∂S

∂U

)−1

. You must

write down any relevant formulas. [6]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3b) Can a system with a concave-up entropy-energy graph, ever be in stable thermal equi-
librium with another system? Explain. The graph is shown in the
gure below. [2]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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(3c) Use the expression for the entropy of a monoatomic ideal gas (see information sheet),
to calculate the energy of this gas. Explain why the result is what you expect. [4]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

END of QUESTIONS
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INFORMATION SHEET

R = 8.31
J

mol.K
; NA = 6.022× 1023 mol−1

Boltzmann’s constant: k =
R

NA
= 1.381× 10−23J/K

Equipartition theorem: Uper molecule =
f

2
kT

CV =

(
∂U

∂T

)
V

CP =

(
∂U

∂T

)
P

+ P

(
∂V

∂T

)
P

Adiabatic compression: V T f/2 = constant and V γP = constant where γ = (f + 2)/f

Fourier heat conduction law:
Q

∆t
= −ktA

dT

dx

Two-state system multiplicity: Ω(N,n) =
N !

n! · (N − n)!
=

(
N
n

)
Multiplicity of an Einstein solid: Ω(N, q) =

(q +N − 1)!

q! · (N − 1)!
=

(
q +N − 1

q

)
Multiplicity of a monoatomic ideal gas: ΩN =

1

N !

V N

h3N

π3N/2

(3N/2)!
(
√

2mU)3N

Stirling’s approximation: N ! ≈ NNe−N
√

2πN and lnN ! ≈ N lnN −N

Approximate form of the Heisenberg uncertainty principle: (∆x)(∆px) ' h

Sackur-Tetrode equation: S = Nk

[
ln

(
V

N

(
4πmU

3Nh2

)3/2
)

+
5

2

]
cV (water) = 4186 J/kg.K

1

T
≡
(
∂S

∂U

)
N,V

sinhx = 1
2
(ex − e−x) ; coshx = 1

2
(ex + e−x) ; tanhx = (sinhx)/(coshx)
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