- 1. Let $x = (\xi_j)$ be a sequence of real numbers.
 - (a) Show that if $x \in l^1$ then $x \in l^2$. (4)
 - (b) With the assumption that $x \in l^1$ show that

$$||x||_{\infty} \le ||x||_2 \le ||x||_1$$

where $\|\cdot\|_{\infty}$, $\|\cdot\|_{2}$, and $\|\cdot\|_{1}$ are the l^{∞} , l^{2} , and l^{1} norms respectively.

2. Consider the Banach space X = C[-1,1]. Define $T: X \to X$ to be the operator given by

$$(Tx)(t) = e^t x(t)$$
 for each $x \in C[-1, 1]$,

and define $S: X \to X$ to be

$$(Sx)(t) = (2 - t^2) \int_{-1}^{t} x(s) ds$$
 for each $x \in C[-1, 1]$

- (a) Explain why T is well-defined, and why S is well-defined. That is, explain why the image of an element $x \in X$, under the operators T and S does in fact belong to X.
- (b) Show that both T and S are bounded linear operators on X, and then calculate only ||T||.
- 3. Show that the dual space of c_0 is (isometrically isomorphic to) l^1 . (8)
- 4. (a) Let X be an inner product space. Show that any set of m mutually orthogonal non-zero vectors $\{x_1, x_2, \dots, x_m\}$ is a linearly independent set.
 - (b) Show that $Y = \{x : x = (\xi_i) \in l^2, \xi_{2n} = 0, n \in \mathbb{N} \}$ (6)

is a closed vector subspace of l^2 and then find the orthogonal complement Y^{\perp} . If

$$x = (\underbrace{1, 1, \dots, 1}_{10 \ places}, 0, 0, 0, 0, \dots),$$

then find the unique vector $y \in Y$ that minimizes the distance between x and Y, and then calculate this distance.

(c) Let X be an inner product space and suppose $x, y \in X$ are linearly independent vectors in X with ||x|| = 1 = ||y||. Show that

$$||tx + (1-t)y|| < 1$$
 for all $0 < t < 1$.

Total:42