1. Let $x=\left(\xi_{j}\right)$ be a sequence of real numbers.
(a) Show that if $x \in l^{1}$ then $x \in l^{2}$.
(b) With the assumption that $x \in l^{1}$ show that

$$
\begin{equation*}
\|x\|_{\infty} \leq\|x\|_{2} \leq\|x\|_{1}, \tag{6}
\end{equation*}
$$

where $\|\cdot\|_{\infty},\|\cdot\|_{2}$, and $\|\cdot\|_{1}$ are the l^{∞}, l^{2}, and l^{1} norms respectively.
2. Consider the Banach space $X=C[-1,1]$. Define $T: X \rightarrow X$ to be the operator given by

$$
(T x)(t)=e^{t} x(t) \text { for each } x \in C[-1,1]
$$

and define $S: X \rightarrow X$ to be

$$
\begin{equation*}
(S x)(t)=\left(2-t^{2}\right) \int_{-1}^{t} x(s) d s \text { for each } x \in C[-1,1] \tag{4}
\end{equation*}
$$

(a) Explain why T is well-defined, and why S is well-defined. That is, explain why the image of an element $x \in X$, under the operators T and S does in fact belong to X.
(b) Show that both T and S are bounded linear operators on X, and then calculate only $\|T\|$.
3. Show that the dual space of c_{0} is (isometrically isomorphic to) l^{1}.
4. (a) Let X be an inner product space. Show that any set of m mutually orthogonal non-zero vectors $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ is a linearly independent set.
(b) Show that

$$
\begin{equation*}
Y=\left\{x: x=\left(\xi_{j}\right) \in l^{2}, \xi_{2 n}=0, n \in \mathbb{N}\right\} \tag{6}
\end{equation*}
$$

is a closed vector subspace of l^{2} and then find the orthogonal complement Y^{\perp}. If

$$
x=(\underbrace{1,1, \ldots, 1}_{10 \text { places }}, 0,0,0,0, \ldots),
$$

then find the unique vector $y \in Y$ that minimizes the distance between x and Y, and then calculate this distance.
(c) Let X be an inner product space and suppose $x, y \in X$ are linearly independent vectors in X with $\|x\|=1=\|y\|$. Show that

$$
\|t x+(1-t) y\|<1 \text { for all } 0<t<1
$$

