

FACULTY OF SCIENCE FAKULTEIT NATUURWETENSKAPPE

DEPARTMENT OF MATHEMATICS / DEPARTEMENT WISKUNDE

MODULE

MAT3B20

INTRODUCTORY ABSTRACT ALGEBRA INLEIDENDE ABSTRAKTE ALGEBRA

CAMPUS

KAMPUS

APK

EXAM

NOVEMBER 2016

EKSAMEN

DATE **SESSION**

SESSIE 8:30-11:00 DATUM 23/11/2016

DR. E. JOUBERT ASSESSOR(S)

INTERNAL MODERATOR INTERNE MODERATOR

PROF. L. VAN WYK

EXTERNAL MODERATOR EKSTERNE MODERATOR

DURATION TYDSDUUR 2,5 UUR

2,5 HOURS

MARKS 85 PUNTE 85

SURNAME AND INITIALS VAN EN VOORLETTERS

STUDENT NUMBER

STUDENTENOMMER

CONTACT NR KONTAK NO

NUMBER OF PAGES: 3 PAGES INCLUDING THE COVER AANTAL BLADSYE: 3 BLADSYE INSLUITEND DIE DEKBLAD

INSTRUCTIONS:

- 1) ANSWER EACH QUESTION IN THE ANSWER BOOKS PROVIDED. IF NECESSARY USE THE BACK OF THE PAGES AND INDICATE IT CLEARLY.
- 2) ONLY NON-PROGRAMMABLE CALCULATORS MAY BE USED.

INSTRUKSIES:

- 1) BEANTWOORD AL DIE VRAE IN DIE GEGEWE ANTWOORDBOEK. AS NODIG GEBRUIK DIE AGTERKANT VAN DIE BLADSYE EN DUI DIT DUIDELIK AAN.
- 2) SLEGS NIE-PROGRAMMEERBARE SAKREKENAARS MAG GEBRUIK WORD.

QUESTION 1 [20] 1.1 Let G and \overline{G} be groups and let ϕ be a function from G to \overline{G} . Answer the following questions:
1.1.1 Provide a detailed definition of when ϕ is a homomorphism . In addition, define $Ker\phi$. [2] 1.1.2 Prove the following: If $\phi(g) = g'$, then $\phi^{-1}(g') = \{x \in G \mid \phi(x) = g'\} = gKer\phi$. [3] 1.1.3 Prove that $Ker\phi$ is a normal subgroup of G . [3]
1.2 Find all homomorphisms from Z_{10} to Z_{15} . [4]
1.3 Let H and K be two groups, where the identity element in K is denoted by e . Answer the following questions:
1.3.1 Prove that the function $\phi: H \oplus K \to K$, defined by $\phi((h, k)) = k$, where $h \in H$ and $k \in K$, is a homomorphism. [2] 1.3.2 Find $Ker\phi$. [2] 1.3.3 Prove that $\phi(H \oplus K) = K$. [2] 1.3.4 Hence, or otherwise, prove that $H \oplus K \ / \ (H \oplus \{e\}) \simeq Z$. [2]
QUESTION 2 [18] 2.1 Consider the group $U(10) \oplus Z_8$. Answer the following questions:
2.1.1 How many elements of order 4 are there in $U(10) \oplus Z_8$? [3] 2.1.2 Is $U(10) \oplus Z_8$ cyclic? Explain your answer. [2] 2.1.3 Are $U(10) \oplus Z_8$ and Z_{32} isomorphic? Explain your answer. [1]
2.2 Let G be a group and let $\phi: G \to G$ be defined by $\phi(g) = g^{-1}$, for all $g \in G$. Answer the following questions:
2.2.1 Show that if G is Abelian , then ϕ is an automorphism . [2] 2.2.2 Show that if G is an automorphism , then G is Abelian . [3]
2.3 Let G be an Abelian group of order n . Suppose G has at least 3 elements of order 3 , and let $a, b \in G$ be elements both of which have order 3 . Answer the following questions:
2.3.1 Define the set $G/\langle a \rangle$. [1] 2.3.2 Find $ G/\langle a \rangle $. [1] 2.3.3 If $b \notin \langle a \rangle$, show that $ b \langle a \rangle = 3$. [3] 2.3.4 Prove that 9 divides n . [2]