

FACULTY OF SCIENCE UNIVERSITY OF JOHANNESBURG

DEPARTMENT OF PURE AND APPLIED MATHEMATICS		
MODULE	MAT2B10 Multivariable and Vector Calculus	
CAMPUS	APK	
EXAM	NOVEMBER	2016
EXAMINER(S)		MRS C DUNCAN
INTERNAL MODERATOR		DR F SCHULZ
DURATION		2 HOURS
MARKS		50
SURNAME AND INITIALS		
STUDENT NUMBER		
CONTACT NUMBER		
NUMBER OF F	PAGES:	1 + 12
INSTRUCTIONS:1. ANSWER ALL QUESTIONS ON THE PAPER IN PEN2. CALCULATORS ARE ALLOWED3. INDICATE CLEARLY ANY ADDITIONAL PAGES USED		2. CALCULATORS ARE ALLOWED

For questions (1.1) - (1.8), please circle only **ONE** correct answer:

(1.1) Find the following limit, if it exists:

(a) 0
$$\lim_{(x,y,z)\to(0,0,0)} \frac{8xy+|z|}{\sqrt{x^2+y^2+z^2}}$$

- (b) $\frac{1}{\sqrt{2}}$
- (c) 8
- (d) $\frac{8}{\sqrt{2}}$
- (e) The limit does not exist.

(1.2) If $D_{\mathbf{u}}f(0,0) = c$, for any unit vector \mathbf{u} , then c = 0.

- (a) True
- (b) False

(1.3) Find all the saddle points of the function $f(x, y) = x \sin \frac{y}{3}$.

- (a) $(0, 3\pi n)$
- (b) $(0, \frac{\pi n}{3})$
- (c) $(3\pi n, 1)$
- (d) $(\frac{3n}{\pi}, 0)$
- (e) $(3\pi n, 0)$
- (1.4) Find the volume of the solid that lies inside the cylinder $x^2 + y^2 = 9$ and the ellipsoid $2x^2 + 2y^2 + z^2 = 36$.
 - (a) 260.31
 - (b) 301.74
 - (c) 261.29
 - (d) 292.45
 - (e) 284.22

(1.5) Find the Jacobian of the transformation $x = 5\alpha \sin \beta$ and $y = 4\alpha \cos \beta$.

- (a) 9α
- (b) $-20\alpha\sin\beta\cos\beta$
- (c) -20α
- (d) $-\alpha$
- (e) 36α
- (1.6) Use Green's Theorem to evaluate $\int_C x^2 y \, dx xy^2 \, dy$, where C is the circle $x^2 + y^2 = 4$ with counterclockwise orientation.
 - (a) -8π
 - (b) -4π
 - (c) 6π
 - (d) 2π
 - (e) none of these

(1.7) Given the position vector $\mathbf{r} = x \, \mathbf{i} + y \, \mathbf{j} + z \, \mathbf{k}$, with $|\mathbf{r}| = r$. Then, $\nabla r = \frac{2\mathbf{r}}{r}$.

- (a) True
- (b) False
- (1.8) The vector field $\mathbf{F} = xyz \,\mathbf{i} + y \,\mathbf{j} + z \,\mathbf{k}$ can always be written as the curl of another vector field.
 - (a) True
 - (b) False

(2.1) Define clearly what is meant by saying that a function z = f(x, y) is continuous at a point (a, b). (2)

(2.2) Hence, determine the set of points at which the following function is continuous:

$$f(x,y) = \begin{cases} \frac{\sin(x-y)}{|x|+|y|} & \text{if } |x|+|y| \neq 0\\ 0 & \text{if } |x|+|y| = 0 \end{cases}$$

(4)

The directional derivative of f(x, y) at the point P = (0, 4) in the direction of the origin is -2. If $\nabla f(0, 4) = \langle k, k \rangle$ for some $k \in \mathbb{R}$, what is the directional derivative at P in the direction of $\theta = \pi/3$?

Find the dimensions of the rectangle with maximum perimeter that can be inscribed with sides parallel to the coordinate axes in the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

The volume of the solid E is given by the following iterated integral

$$V(E) = \int_0^2 \int_0^{\sqrt{4-x^2}} \int_0^{\sqrt{16-x^2-y^2}} dz dy dx$$

(5.1) Sketch the solid E.

(5.2) Convert the given triple integral to spherical coordinates. You do not need to evaluate the integral. (4)

(2)

Consider the double integral

$$\iint_{\Omega} (x+y) \, dx dy$$

with Ω the region bounded by x = y, $x = y + \pi$, x = -2y and $x = -2y + \frac{\pi}{2}$.

(6.1) Sketch Ω .

(6.2) Determine the transformation T(u, v) = (x, y) such that x = g(u, v) and y = h(u, v), and calculate the associated Jacobian. (3)

(6.3) Using (6.1) and (6.2), solve the integral $\iint_{\Omega} (x+y) \, dx \, dy.$ (3)

Given a vector field $\mathbf{F} = P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}$. Show that

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C P \, dx + Q \, dy + R \, dz$$

along a smooth curve C.

The force exerted by an electric charge at the origin on a charged particle at a point (x, y, z) with position vector $\mathbf{r} = \langle x, y, z \rangle$ is $\mathbf{F} = K\mathbf{r}/|\mathbf{r}|^3$, where K is a constant. Find the work done by this force as the particle moves along a straight line from (2, 0, 0) to (2, 1, 5).

Prove that $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in D if and only if $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ for every closed path C in D.

[4]

If $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field on \mathbb{R}^3 and P, Q, and R have continuous second-order partial derivatives, then show that

div curl $\mathbf{F} = 0$.