Faculty of Science University of Johannesburg

SURNAME AND INITIALS \qquad

STUDENT NUMBER \qquad

CONTACT NUMBER \qquad

NUMBER OF PAGES: $1+12$
INSTRUCTIONS:

1. ANSWER ALL QUESTIONS ON THE PAPER IN PEN
2. CALCULATORS ARE ALLOWED
3. INDICATE CLEARLY ANY ADDITIONAL PAGES USED

For questions (1.1) - (1.8), please circle only ONE correct answer:
(1.1) Find the following limit, if it exists:

$$
\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{8 x y+|z|}{\sqrt{x^{2}+y^{2}+z^{2}}}
$$

(a) 0
(b) $\frac{1}{\sqrt{2}}$
(c) 8
(d) $\frac{8}{\sqrt{2}}$
(e) The limit does not exist.
(1.2) If $\mathrm{D}_{\mathbf{u}} f(0,0)=c$, for any unit vector \mathbf{u}, then $c=0$.
(a) True
(b) False
(1.3) Find all the saddle points of the function $f(x, y)=x \sin \frac{y}{3}$.
(a) $(0,3 \pi n)$
(b) $\left(0, \frac{\pi n}{3}\right)$
(c) $(3 \pi n, 1)$
(d) $\left(\frac{3 n}{\pi}, 0\right)$
(e) $(3 \pi n, 0)$
(1.4) Find the volume of the solid that lies inside the cylinder $x^{2}+y^{2}=9$ and the ellipsoid $2 x^{2}+2 y^{2}+z^{2}=36$.
(a) 260.31
(b) 301.74
(c) 261.29
(d) 292.45
(e) 284.22
(1.5) Find the Jacobian of the transformation $x=5 \alpha \sin \beta$ and $y=4 \alpha \cos \beta$.
(a) 9α
(b) $-20 \alpha \sin \beta \cos \beta$
(c) -20α
(d) $-\alpha$
(e) 36α
(1.6) Use Green's Theorem to evaluate $\int_{C} x^{2} y d x-x y^{2} d y$, where C is the circle $x^{2}+y^{2}=4$ with counterclockwise orientation.
(a) -8π
(b) -4π
(c) 6π
(d) 2π
(e) none of these
(1.7) Given the position vector $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$, with $|\mathbf{r}|=r$. Then, $\nabla r=\frac{2 \mathbf{r}}{r}$.
(a) True
(b) False
(1.8) The vector field $\mathbf{F}=x y z \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ can always be written as the curl of another vector field.
(a) True
(b) False
(2.1) Define clearly what is meant by saying that a function $z=f(x, y)$ is continuous at a point (a, b).
(2.2) Hence, determine the set of points at which the following function is continuous:

$$
f(x, y)= \begin{cases}\frac{\sin (x-y)}{|x|+|y|} & \text { if }|x|+|y| \neq 0 \tag{4}\\ 0 & \text { if }|x|+|y|=0\end{cases}
$$

The directional derivative of $f(x, y)$ at the point $P=(0,4)$ in the direction of the origin is -2 . If $\nabla f(0,4)=\langle k, k\rangle$ for some $k \in \mathbb{R}$, what is the directional derivative at P in the direction of $\theta=\pi / 3$?

Find the dimensions of the rectangle with maximum perimeter that can be inscribed with sides parallel to the coordinate axes in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

The volume of the solid E is given by the following iterated integral

$$
\begin{equation*}
V(E)=\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} \int_{0}^{\sqrt{16-x^{2}-y^{2}}} d z d y d x \tag{2}
\end{equation*}
$$

(5.1) Sketch the solid E.
(5.2) Convert the given triple integral to spherical coordinates. You do not need to evaluate the integral.

Consider the double integral

$$
\iint_{\Omega}(x+y) d x d y
$$

with Ω the region bounded by $x=y, x=y+\pi, x=-2 y$ and $x=-2 y+\frac{\pi}{2}$.
(6.1) Sketch Ω.
(6.2) Determine the transformation $T(u, v)=(x, y)$ such that $x=g(u, v)$ and $y=h(u, v)$, and calculate the associated Jacobian.
(6.3) Using (6.1) and (6.2), solve the integral $\iint_{\Omega}(x+y) d x d y$.

Given a vector field $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$. Show that

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} P d x+Q d y+R d z
$$

along a smooth curve C.

The force exerted by an electric charge at the origin on a charged particle at a point (x, y, z) with position vector $\mathbf{r}=\langle x, y, z\rangle$ is $\mathbf{F}=K \mathbf{r} /|\mathbf{r}|^{3}$, where K is a constant. Find the work done by this force as the particle moves along a straight line from $(2,0,0)$ to $(2,1,5)$.

Prove that $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of path in D if and only if $\int_{C} \mathbf{F} \cdot d \mathbf{r}=0$ for every closed path C in D.

If $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is a vector field on \mathbb{R}^{3} and P, Q, and R have continuous second-order partial derivatives, then show that

$$
\operatorname{div} \operatorname{curl} \mathbf{F}=0 .
$$

