FACULTY OF SCIENCE FAKULTEIT NATUURWETENSKAPPE

DEPARTMENT OF PURE AND APPLIED MATHEMATICS

MODULE | MAT2A10 |
| :--- |
| Sequences, Series and Vector Calculus |
| CAMPUS \quad APK |
| EXAM |
| JUNE 2016 |

EXAMINER	C DUNCAN
INTERNAL MODERATOR	F SCHULZ
DURATION	2 HOURS
MARKS	50

SURNAME AND INITIALS \qquad

STUDENT NUMBER \qquad

CONTACT NUMBER \qquad

NUMBER OF PAGES: 1 + 14
INSTRUCTIONS: 1. ANSWER ALL QUESTIONS ON THE PAPER IN PEN
2. CALCULATORS ARE ALLOWED
3. INDICATE CLEARLY ANY ADDITIONAL WORKING OUT

For questions (1.1) - (1.5), please circle only ONE correct answer:
(1.1) Let $\sum a_{n}$ be a series of real numbers. What does it mean for this series to be convergent?
(a) The series $\sum a_{n}$ will always and only converge to 0 .
(b) The sequence $\left\{a_{n}\right\}$ is always monotonic and bounded.
(c) The sequence of partial sums $\left\{s_{n}\right\}$ of $\sum a_{n}$ always and only converges to 0 .
(d) There is a real number L such that the sequence $\left\{a_{n}\right\}$ converges to L.
(e) There is a real number L such that the sequence of partial sums $\left\{s_{n}\right\}$ of $\sum a_{n}$ converges to L.
(1.2) Suppose $\sum a_{n}$ is a series of real numbers with $\lim _{n \rightarrow \infty} a_{n}=0$. Then:
(a) The series $\sum a_{n}$ is convergent.
(b) The series $\sum a_{n}$ is divergent.
(c) No conclusion can be drawn about the convergence or divergence of the series.
(1.3) Which of the following statements are true:
(i) If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}>1$ for a series $\sum a_{n}$, then the series is divergent.
(ii) If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}>1$ for a series $\sum a_{n}$, then the series is convergent.
(iii) If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}<1$ for a series $\sum a_{n}$, then the series is convergent.
(iv) If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=1$ for a series $\sum a_{n}$, then the convergence of the series is inconclusive.
(a) i \& ii
(b) i, iii, \& iv
(c) ii \& iv
(d) i \& iv
(1.4) The Taylor series of e^{x} about the point $x=-1$ is given by:
(a) $\sum_{n=0}^{\infty} \frac{(x-1)^{n}}{e^{n}(n!)}$
(b) $\sum_{n=0}^{\infty} \frac{(x+1)^{n}}{e(n!)}$
(c) $\sum_{n=0}^{\infty} \frac{(x+1)^{n}}{\left(e^{2} n\right)!}$
(1.5) Let C be a smooth curve defined by a vector function \mathbf{r} with unit tangent vector \mathbf{T}, binormal vector \mathbf{B} and normal vector \mathbf{N}. Then the following statements are true:
(i) $\mathbf{T} \perp \mathbf{T}^{\prime}$
(ii) $\mathbf{T} \perp \mathbf{B}$
(iii) $\mathbf{B} \perp \mathbf{N}$
(a) i \& ii
(b) ii \& iii
(c) i, ii \& iii

Using an appropriate method, determine if the following series are convergent or divergent:
(2.1) $\sum_{n=2}^{\infty} \frac{2}{n \sqrt{\ln (n)+1}}$
(2.2) $\sum_{k=1}^{\infty} \frac{k^{2} 2^{k-1}}{(-5)^{k}}$
(2.3) $\sum_{n=2}^{\infty}(-1)^{n} \frac{1+n^{-1}}{n}$

Prove the Monotonic Sequence Theorem.
(4.1) State the Ratio Test for series.
(4.2) Hence, or otherwise, determine whether the following series converges or diverges

$$
\sum_{n=1}^{\infty} \frac{\sqrt{n}}{1+n^{2}}
$$

(5.1) Prove that $\cos x$ is equal to the sum of its Maclaurin series.
(5.2) Use power series expansion to evaluate the following limit

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\cos \left(x^{2}\right)-1}{x^{4}} \tag{3}
\end{equation*}
$$

Find the sum of the following series

$$
-\frac{\pi}{6 \cdot 1!}+\frac{\pi^{3}}{6^{3} \cdot 3!}-\frac{\pi^{5}}{6^{5} \cdot 5!}+\frac{\pi^{7}}{6^{7} \cdot 7!}-\ldots
$$

Let $\mathbf{r}(t)=\left\langle\sqrt{t}, \frac{\ln t}{t^{2}-1}, 2 t^{2}\right\rangle$.
(7.1) Determine $\lim _{t \rightarrow 1} \mathbf{r}(t)$.
(7.2) Is $\mathbf{r}(t)$ continuous at $t=1$? Motivate your answer clearly.

The helix $\mathbf{r}_{1}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}$ intersects the curve $\mathbf{r}_{2}(t)=(1+t) \mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k}$ at the point $(1,0,0)$. Find the angle of intersection of these curves.

Prove that the curvature of the curve given by the vector function $\mathbf{r}(t)$ is

$$
\kappa(t)=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}
$$

Consider a curve whose position is given by the vector function

$$
\mathbf{r}(t)=e^{t} \cos t \mathbf{i}+\mathbf{j}+e^{t} \sin t \mathbf{k}
$$

(10.1) Reparametrise the above curve with respect to arc length measured from the point $(1,1,0)$ in the direction of increasing t.
(10.2) Determine at what position we are on the curve after we have traveled a distance of $\sqrt{2}$ units.

Let \mathbf{v} be the velocity, v the speed and a the acceleration of a particle whose position is given by the vector function \mathbf{r}.
(11.1) Prove that $\mathbf{a}=v^{\prime} \mathbf{T}+\kappa v^{2} \mathbf{N}$
(11.2) Let C be the curve given by the position vector $\mathbf{r}(t)=\left\langle 3 t,-t, t^{2}\right\rangle$. Determine the tangential component of the acceleration of a particle moving along the curve C.

