

FACULTY OF SCIENCE FAKULTEIT NATUURWETENSKAPPE

DEPARTMENT OF PURE AND APPLIED MATHEMATICS			
MODULE	MAT2A10 Sequences,	Series and Vector Calculus	
CAMPUS	АРК		
EXAM	JUNE 2016		
EXAMINER		(CDUNCAN
INTERNAL MC	DERATOR	F	SCHULZ
DURATION		2	HOURS
MARKS		5	50
SURNAME AND			
STUDENT NUM	BER		
CONTACT NUM	BER		
NUMBER OF F	PAGES:	1 + 14	
INSTRUCTION	IS:	1. ANSWER ALL QUESTIONS ON THE PAPER IN PEN 2. CALCULATORS ARE ALLOWED 3. INDICATE CLEARLY ANY ADDITIONAL WORKING OUT	

For questions (1.1) - (1.5), please circle only **ONE** correct answer:

- (1.1) Let $\sum a_n$ be a series of real numbers. What does it mean for this series to be convergent?
 - (a) The series $\sum a_n$ will always and only converge to 0.
 - (b) The sequence $\{a_n\}$ is always monotonic and bounded.
 - (c) The sequence of partial sums $\{s_n\}$ of $\sum a_n$ always and only converges to 0.
 - (d) There is a real number L such that the sequence $\{a_n\}$ converges to L.
 - (e) There is a real number L such that the sequence of partial sums $\{s_n\}$ of $\sum a_n$ converges to L.

(1.2) Suppose $\sum a_n$ is a series of real numbers with $\lim_{n\to\infty} a_n = 0$. Then:

- (a) The series $\sum a_n$ is convergent.
- (b) The series $\sum a_n$ is divergent.
- (c) No conclusion can be drawn about the convergence or divergence of the series.

(1.3) Which of the following statements are true:

- (i) If $\lim_{n \to \infty} \sqrt[n]{|a_n|} > 1$ for a series $\sum a_n$, then the series is divergent.
- (ii) If $\lim_{n\to\infty} \sqrt[n]{|a_n|} > 1$ for a series $\sum a_n$, then the series is convergent.
- (iii) If $\lim_{n\to\infty} \sqrt[n]{|a_n|} < 1$ for a series $\sum a_n$, then the series is convergent.
- (iv) If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$ for a series $\sum a_n$, then the convergence of the series is inconclusive.

(a) i & ii (b) i, iii, & iv (c) ii & iv (d) i & iv

(1.4) The Taylor series of e^x about the point x = -1 is given by:

(a)
$$\sum_{n=0}^{\infty} \frac{(x-1)^n}{e^n (n!)}$$

(b)
$$\sum_{n=0}^{\infty} \frac{(x+1)^n}{e(n!)}$$

(c)
$$\sum_{n=0}^{\infty} \frac{(x+1)^n}{(e^2 n)!}$$

- (1.5) Let C be a smooth curve defined by a vector function \mathbf{r} with unit tangent vector \mathbf{T} , binormal vector \mathbf{B} and normal vector \mathbf{N} . Then the following statements are true:
 - (i) $\mathbf{T} \perp \mathbf{T}'$
 - (ii) $\mathbf{T} \perp \mathbf{B}$
 - (iii) $\mathbf{B} \perp \mathbf{N}$
 - (a) i & ii (b) ii & iii (c) i, ii & iii

Using an appropriate method, determine if the following series are convergent or divergent:

(2.1)
$$\sum_{n=2}^{\infty} \frac{2}{n\sqrt{\ln(n)+1}}$$
 (3)

(2.2)
$$\sum_{k=1}^{\infty} \frac{k^2 2^{k-1}}{(-5)^k}$$

(2.3)
$$\sum_{n=2}^{\infty} (-1)^n \frac{1+n^{-1}}{n}$$

(2)

(2)

Prove the Monotonic Sequence Theorem.

5

[4]

(4.1) State the Ratio Test for series.

[5](3)

(4.2) Hence, or otherwise, determine whether the following series converges or diverges

$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{1+n^2}$$

(2)

Question 5[6](5.1) Prove that $\cos x$ is equal to the sum of its Maclaurin series.(3)

(5.2) Use power series expansion to evaluate the following limit

$$\lim_{x \to 0} \frac{\cos(x^2) - 1}{x^4}$$

(3)

Find the sum of the following series

$$-\frac{\pi}{6\cdot 1!} + \frac{\pi^3}{6^3\cdot 3!} - \frac{\pi^5}{6^5\cdot 5!} + \frac{\pi^7}{6^7\cdot 7!} - \dots$$

$\underline{\text{Question } 7}$

Let
$$\mathbf{r}(t) = \left\langle \sqrt{t}, \frac{\ln t}{t^2 - 1}, 2t^2 \right\rangle.$$

(7.1) Determine
$$\lim_{t \to 1} \mathbf{r}(t)$$
.

(2)

[4]

(7.2) Is $\mathbf{r}(t)$ continuous at t = 1? Motivate your answer clearly.

(2)

The helix $\mathbf{r}_1(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + t \mathbf{k}$ intersects the curve $\mathbf{r}_2(t) = (1+t) \mathbf{i} + t^2 \mathbf{j} + t^3 \mathbf{k}$ at the point (1, 0, 0). Find the angle of intersection of these curves.

Prove that the curvature of the curve given by the vector function $\mathbf{r}(t)$ is

$$\kappa(t) = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}$$

Consider a curve whose position is given by the vector function

$$\mathbf{r}(t) = e^t \cos t \, \mathbf{i} + \, \mathbf{j} + e^t \sin t \, \mathbf{k}$$

(10.1) Reparametrise the above curve with respect to arc length measured from the point (1, 1, 0) in the direction of increasing t.

(1)

(4)

^(10.2) Determine at what position we are on the curve after we have traveled a distance of $\sqrt{2}$ units.

(3)

Let **v** be the velocity, v the speed and **a** the acceleration of a particle whose position is given by the vector function **r**.

(11.1) Prove that $\mathbf{a} = \upsilon' \mathbf{T} + \kappa \upsilon^2 \mathbf{N}$

(11.2) Let C be the curve given by the position vector $\mathbf{r}(t) = \langle 3t, -t, t^2 \rangle$. Determine the tangential component of the acceleration of a particle moving along the curve C. (2)