

FACULTY OF SCIENCE

DE	PARTM	ENT OF PURE AND APPLIED MATHEMATICS							
MODULE:		CED BIO & ENVIRO MATH & STATS – MAT1D	01						
CAMPUS:	AMPUS: APK								
ASSESSMENT: F	INAL SUMMATIVE ASSESSMENT								
SECTION:	STATIS	TATISTICS							
DATE:		28 NOVEMBER 2016							
ASSESSORS:		MISS JR TSUEN							
INTERNAL MODER	ATOR:	MR V VAN APPEL							
DURATION:		1 HOUR	40						
INITIALS AND SURI	NAME:								
STUDENT NUMBER	ł:								
CONTACT NUMBER	R:								
NUMBER OF PAGE	S:	10 (INCLUDING COVER PAGE)							
 NO PENCIL SHOW ALL STATE ALL CALCULAT 	- or tip . The Ne - Formu Tors Af	QUESTIONS IN PEN PEX ALLOWED ECCESARY CALCULATIONS CLEARLY JLAS USED AS THEY ARE MARK-CARRYING RE ALLOWED RY, ROUND OFF TO TWO DECIMAL PLACES							

• QUESTIONS CAN BE ANSWERED IN ANY ORDER

Question 1

The average lifespan of a western honey bee is 5 months with a population standard deviation of 1.75 months. It is believed that pesticides used on farms is harming the western honey bees which play a vital role in the pollination of the plants. A sample of honey bees is found to have an average lifespan of 3.5 months.

 State the hypotheses to test if the average lifespan of a western honey bee is less than 5 months.

2) Give the formula of test statistic to be used. Explain your answer. [2]

3) Draw the rejection region and state the rejection rule for a test at 5% significance. [3]

[14]

- 2 -

4) Calculate the test statistic.

5) State your conclusion, motivate it and interpret your findings. [3]

6) Use the p-value method to confirm your answer above. [1]

7) What error are you subject to? Describe with reference to this specific question when we would make this error. [2]

- 3 -

Question 2

The global concentrations of Carbon Dioxide per year were recorded.

	Year	Carbon dioxide concentration (ppm)
1	1950	310
2	1960	320
3	1970	325
4	1980	348
5	1990	350
6	2000	375
7	2010	385

1) Calculate and interpret the correlation coefficient.

[2]

2) Determine the least squares regression line to predict the carbon dioxide concentration per year. [2]

Calculate what the carbon dioxide concentration was in 1987. State whether this value is reliable or not. Explain your answer. [2]

[8]

4) Would the predicted value of the number of whales for 2015 be more reliable, less reliable or have the same reliability? Explain your answer. [2]

Question 3

Migraine headache patients participated in a double-blind clinical trial to assess an experimental surgery. The trial entailed 75 patients that were randomly assigned to real surgery or fake surgery. The surgeons considered it a success if there was a substantial reduction in migraine headaches.

	Treatment						
	Real Surgery	Fake Surgery	Total				
Substantial Reduction	41	15	56				
No Reduction	8	11	19				
Total	49	26	75				

 State the hypotheses to test for an association between having surgery and a substantial reduction in migraine headaches. [2]

2) Calculate the expected values.

[2]

[13]

3) Calculate the Chi-Square statistic.

4) State the rejection rule and draw the rejection region of the null hypothesis for a test at 10% significance. [3]

5) Conclude, motivate and interpret your answer. [3]

End of assessment – Total marks 35

- 6 -

FORMULA SHEET

Hypothesis Testing

$$z^* = \frac{\bar{x} - \mu}{\sigma}$$
$$z^* = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}}$$

$$z^* = \frac{\bar{x} - \mu}{s/\sqrt{n}}$$

$$t^* = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$

$$z^* = \frac{p - \pi}{\sqrt{\frac{\pi(1 - \pi)}{n}}}$$

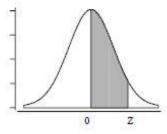
Comparing samples

$$t^* = \frac{\overline{x_1} - \overline{x_2} - \mu_1 - \mu_2}{s_{\overline{x_1} - \overline{x_2}}}$$
$$t^* = \frac{\overline{x_d} - \mu_d}{s_d / \sqrt{n}}$$
$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$
$$s_{\overline{x_1} - \overline{x_2}} = \sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}$$
$$df = n_1 + n_2 - 2$$

Chi-squared

$$\chi^{2} = \sum_{i=1}^{m} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

$$df = (r-1)(k-1)$$

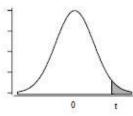

 $E_i = \frac{row \ total \times column \ total}{grand \ total}$

Regression and Correlation

$$t_s = r \sqrt{\frac{n-2}{1-r^2}}$$

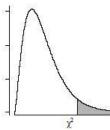
$$b = r\left(\frac{s_y}{s_x}\right)$$

APPENDIX A: STANDARD NORMAL TABLES



Areas Under the Standard Normal Curve from 0 to Z

.09	.08	.07	.06	.05	.04	.03	.02	.01	.00	Z
.0359	.0319	.0279	.0239	.0199	.0160	.0120	.0080	.0040	.0000	0.0
.0753	.0714	.0675	.0636	.0596	.0557	.0517	.0478	.0438	.0398	0.1
.1141	.1103	.1064	.1026	.0987	.0948	.0910	.0871	.0832	.0793	0.2
.1517	.1480	.1443	.1406	.1368	.1331	.1293	.1255	.1217	.1179	0.3
.1879	.1844	.1808	.1772	.1736	.1700	.1664	.1628	.1591	.1554	0.4
.2224	.2190	.2157	.2123	.2088	.2054	.2019	.1985	.1950	.1915	0.5
.2549	.2517	.2486	.2454	.2422	.2389	.2357	.2324	.2291	.2257	0.6
.2852	.2823	.2794	.2764	.2734	.2704	.2673	.2642	.2611	.2580	0.7
.3133	.3106	.3078	.3051	.3023	.2995	.2967	.2939	.2910	.2881	0.8
.3389	.3365	.3340	.3315	.3289	.3264	.3238	.3212	.3186	.3159	0.9
.3621	.3599	.3577	.3554	.3531	.3508	.3485	.3461	.3438	.3413	1.0
.3830	.3810	.3790	.3770	.3749	.3729	.3708	.3686	.3665	.3643	1.1
.4015	.3997	.3980	.3962	.3944	.3925	.3907	.3888	.3869	.3849	1.2
.4177	.4162	.4147	.4131	.4115	.4099	.4082	.4066	.4049	.4032	1.3
.4319	.4306	.4292	.4279	.4265	.4251	.4236	.4222	.4207	.4192	1.4
.4441	.4429	.4418	.4406	.4394	.4382	.4370	.4357	.4345	.4332	1.5
.4545	.4535	.4525	.4515	.4505	.4495	.4484	.4474	.4463	.4452	1.6
.4633	.4625	.4616	.4608	.4599	.4591	.4582	.4573	.4564	.4554	1.7
.4706	.4699	.4693	.4686	.4678	.4671	.4664	.4656	.4649	.4641	1.8
.4767	.4761	.4756	.4750	.4744	.4738	.4732	.4726	.4719	4713	1.9
.4817	.4812	.4808	.4803	.4798	.4793	.4788	.4783	.4778	.4772	2.0
.4857	.4854	.4850	.4846	.4842	.4838	.4834	.4830	.4826	.4821	2.1
.4890	.4887	.4884	.4881	.4878	.4875	.4871	.4868	.4864	.4861	2.2
.4916	.4913	.4911	.4909	.4906	.4904	.4901	.4898	.4896	.4893	2.3
.4936	.4934	.4932	.4931	.4929	.4927	.4925	.4922	.4920	.4918	2.4
.4952	.4951	.4949	.4948	.4946	.4945	.4943	.4941	.4940	.4938	2.5
.4964	.4963	.4962	.4961	.4960	.4959	.4957	.4956	.4955	.4953	2.6
.4974	.4973	.4972	.4971	.4970	.4969	.4968	4967	.4966	.4965	2.7
.4981	.4980	.4979	.4979	.4978	.4977	.4977	.4976	.4975	.4974	2.8
.4986	.4986	.4985	.4985	.4984	.4984	.4983	.4982	.4982	.4981	2.9
.4990	.4990	.4989	.4989	.4989	4988	4988	.4987	.4987	.4987	3.0


APPENDIX B: STUDENT'S *t*-DISTRIBUTION

The entries in the table are the critical values of t for the specified number of degrees of freedom and areas in the right tail.

	Areas in the Right Tail under the t Distribution Curve							
df	.1	.05	.025	.01	.005	.001		
1	3.078	6.314	12.706	31.821	63.657	318.309		
2	1.886	2.920	4.303	6.965	9.925	22.327		
2 3	1.638	2.353	3.182	4.541	5.841	10.215		
4	1.533	2.132	2.776	3.747	4.604	7.173		
5	1.476	2.015	2.571	3.365	4.032	5.893		
6 7	1.440	1.943	2.447	3.143	3.707	5.208		
	1.415	1.895	2.365	2.998	3.499	4.785		
8	1.397	1.860	2.306	2.896	3.355	4.501		
9	1.385	1.833	2.262	2.821	3.250	4.297		
10	1.372	1.812	2.228	2.764	3.169	4.144		
11	1.363	1.796	2.201	2.718	3.106	4.025		
12	1.356	1.782	2.179	2.681	3.055	3.930		
13	1.350	1.771	2.160	2.650	3.012	3.852		
14	1.345	1.761	2.145	2.624	2.977	3.787		
15	1.341	1.753	2.131	2.602	2.947	3.733		
16	1.337	1.746	2.120	2.583	2.921	3.686		
17	1.333	1.740	2.110	2.567	2.898	3.646		
18	1.330	1.734	2.101	2.552	2.878	3.610		
19	1.328	1.729	2.093	2.539	2.861	3.579		
20	1.325	1.725	2.086	2.528	2.845	3.552		
21	1.323	1.721	2.080	2.518	2.831	3.527		
22	1.321	1.717	2.074	2.508	2.819	3.505		
23	1.319	1.714	2.069	2.500	2.807	3.485		
24	1.318	1.711	2.064	2.492	2.797	3.467		
25	1.316	1.708	2.060	2.485	2.787	3.450		
26	1.315	1.706	2.056	2.479	2.779	3.435		
27	1.314	1.703	2.052	2.473	2.771	3.421		
28	1.313	1.701	2.048	2.467	2.763	3.408		
29	1.311	1.699	2.045	2.462	2.756	3.396		
30	1.310	1.697	2.042	2.457	2.750	3.385		

The entries in the table are the critical values of χ^2 for the specified degrees of freedom and areas in the right tail.

	Areas in the Right Tail under the Chi-square Distribution Curve									
df	.995	.990	.975	.950	.900	.100	.050	.025	.010	.005
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.582
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997
21	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	41.401
22	8.643	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40.289	42.796
23	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.181
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.559
25	10.520	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314	46.928
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	<mark>41.923</mark>	45.642	48.290
27	11.808	12.879	14.573	16.151	18.114	36.741	40.113	43.195	46.963	49.645
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993
29	13.121	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.336
30	13.787	14.953	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672
40	20.707	22.164	24.433	26.509	29.051	51.805	55.758	59.342	63.691	66.766
50	27.991	29.707	32.357	34.764	37.689	63.167	67.505	71.420	76.154	79.490
60	35.534	37.485	40.482	43.188	46.459	74.397	79.082	83.298	88.379	91.952
70	43.275	45.442	48.758	51.739	55.329	85.527	90.531	95.023	100.425	104.215
80	51.172	53.540	57.153	60.391	64.278	96.578	101.879	106.629	112.329	116.321

- 10 -