

UNIVERSITEIT
JOHANNESBURG

|  |  |
| :--- | :--- |
|  | DEPARTMENT OF PURE AND APPLIED MATHEMATICS |
| MODULE | MAT1C3E (CALCULUS SECTION) |
|  | BIO \& ENVIRO MATHS AND STATS |
| CAMPUS $\quad$ APK |  |
| SUPPLEMENTARY |  |

DATE: JULY 2016
ASSESSOR:
INTERNAL MODERATOR:
DURATION: 60 MINUTES

## SESSION:

MR. T. MOHUBEDU
MR. V. VAN APPEL
MARKS: 40

SURNAME AND INITIALS: $\qquad$

STUDENT NUMBER: $\qquad$
CONTACT NUMBER: $\qquad$

## Please read the following instructions carefully

1. Answer all questions on the paper in pen.
2. This paper consists of 8 pages including the cover page.
3. Show all calculations.
4. Calculators are allowed.
5. Given $f(x)=\ln 2-\cos x$

### 1.1 Find the first derivative of $f$.

1.2 Find the second derivative of $f$.
2. Find the first derivative: $f(x)=\ln (\ln (3 x+e)$

3 Use the product rule for derivatives to find the derivative:

$$
f(x)=\left(3-x^{2}\right)(1-4 x)
$$

4 Use the product rule for derivatives to find the derivative:

$$
f(x)=\frac{\sin x}{1+2 e^{x}}
$$

5. Given $x^{2}+4 x y+y^{4}=1$
5.1 Use implicit differentiation to find $y^{\prime}$.
5.2 Find the slope of the tangent line(s) to $f$ at $x=0$.
6. An object is tossed upward at $10 \mathrm{~m} / \mathrm{s}$ from a height of 100 m . The distance above the ground is given by $M(t)=100+10 t-4.9 t^{2}$.
6.1 Find the time when the object reaches a critical point.
[2]
6.2 Find the maximum height of the object.
6.3 Find the time it takes the object to hit the ground.
7. Suppose a population of bacteria grows according to $P(t)=10 e^{t}$, and the mass per individual by $m(t)=1-t$ for $t \geq 0$.
7.1 Find the equation for the total mass of the population.
7.2 Find the derivative of the total mass.
7.3 Is the total mass of the population increasing or decreasing? Motivate your answer.
7.4 When will the total mass reach zero?
8. Which point on the given graph is:
8.1 a critical point.
[1]
8.2 a point of inflection.
8.3 a point with a positive derivative
[1]

9. Sketch the graph of any function with a positive second derivative.

10. Given $f(t)=t+\cos t$ for $0 \leq t \leq \pi$. where the first and the second derivatives of $f$ are $f^{\prime}(t)=1-\sin t$, and $f^{\prime \prime}(t)=-\cos t$, respectively.
10.1 Find the critical points of $f$.
10.2 Determine the curvature.

