UNIVERSITY OF JOHANNESBURG

FACULTY OF SCIENCE

DEPARTMENT OF PURE AND APPLIED MATHEMATICS	
MODULE MAT1C3E (CALCU	LUS SECTION)
BIO & ENVIRO MAT	YHS AND STATS
CAMPUS APK	
SUPPLEMENTARY JULY 201	15
DATE: JULY 2016	SESSION:
ASSESSOR:	MR. T. MOHUBEDU
INTERNAL MODERATOR:	MR. V. VAN APPEL
DURATION: 60 MINUTES	MARKS: 40
SURNAME AND INITIALS:	
STUDENT NUMBER:	
CONTACT NUMBER:	

Please read the following instructions carefully

- 1. Answer all questions on the paper in pen.
- 2. This paper consists of 8 pages including the cover page.
- 3. Show all calculations.
- 4. **Calculators are allowed.**

- 1. Given $f(x) = \ln 2 \cos x$
 - 1.1 Find the first derivative of f. [1]
 - 1.2 Find the second derivative of f. [1]

2. Find the first derivative: $f(x) = \ln(\ln(3x + e))$ [3]

- 3 Use the product rule for derivatives to find the derivative: [2]
 - $f(x) = (3 x^2)(1 4x)$

4 Use the product rule for derivatives to find the derivative:

$$f(x) = \frac{\sin x}{1 + 2e^x}$$

- 5. Given $x^2 + 4xy + y^4 = 1$
 - 5.1 Use implicit differentiation to find y'.

[3]

- 6. An object is tossed upward at 10 m/s from a height of 100 m. The distance above the ground is given by $M(t) = 100 + 10t 4.9t^2$.
 - 6.1 Find the time when the object reaches a critical point. [2]

6.2 Find the maximum height of the object.

[1]

6.3 Find the time it takes the object to hit the ground.

- 7. Suppose a population of bacteria grows according to $P(t) = 10e^t$, and the mass per individual by m(t) = 1 t for $t \ge 0$.
 - 7.1 Find the equation for the total mass of the population. [1]

7.2 Find the derivative of the total mass.

[2]

7.3 Is the total mass of the population increasing or decreasing? Motivate your answer.

7.4 When will the total mass reach zero?

[2]

[2]

8. Which point on the given graph is:

9. Sketch the graph of any function with a positive second derivative.

- 10. Given $f(t) = t + \cos t$ for $0 \le t \le \pi$. where the first and the second derivatives of *f* are $f'(t) = 1 \sin t$, and $f''(t) = -\cos t$, respectively.
 - 10.1 Find the critical points of f.

[2]

10.2 Determine the curvature.

[2]

