UNIVERSITY OF JOHANNESBURG
FACULTY OF SCIENCE

$\frac{\text { UNIVERSITEIT }}{\text { JOHANNESBURG }}$

DEPARTMENT OF PURE AND APPLIED MATHEMATICS

MODULE MAT1C3E (CALCULUS SECTION)
BIO \& ENVIRO MATHS AND STATS
CAMPUS APK

EXAM JUNE 2016

DATE: $\quad 26$ MAY 2016
ASSESSOR:
INTERNAL MODERATOR:
DURATION: 60 MINUTES
SESSION: 08:30-10:30
MR. T. MOHUBEDU
MR. V. VAN APPEL
MARKS: 40

SURNAME AND INITIALS: \qquad
STUDENT NUMBER: \qquad
CONTACT NUMBER: \qquad

Please read the following instructions carefully

1. Answer all questions on the paper in pen.
2. This paper consists of 9 pages including the cover page.
3. Show all calculations.
4. Calculators are allowed.
5. Use the binomial Theorem to expand $(2 x+y)^{3}$.
6. Given $f(x)=\cos x+\ln x$
2.1 Find the first derivative of f.
2.2 Find the second derivative of f.
7. Find f^{\prime} given $f(x)=\ln (\cos 3 x)$
8. Use the product rule for derivatives to find the derivative of

$$
f(x)=\left(x^{2}-3\right)\left(-2 x^{2}+1\right)
$$

5. Use the product rule for derivatives to find the derivative of

$$
f(x)=\frac{e^{x}}{1+\sin x}
$$

6. Given $x^{2}+x y-y^{2}+1=0$
6.1 Use implicit differentiation to find y^{\prime}.
6.2 Find the slope of the tangent line(s) to f at $x=0$
7. An object is tossed upward at $10 \mathrm{~m} / \mathrm{s}$ from a height of 150 m . The distance above the ground is given by $M(t)=150+10 t-4.9 t^{2}$.
7.1 Find the time when the object reaches a critical point.
7.2 Find the maximum height of the object.
7.3 Find the time when the object hits the ground.

7.4 Find the objects' speed when it hits the ground.

8. The mass M of an object is the product of density ρ and the volume V. If the mass and the volume of an insect are given by $M(t)=3+t^{2}$ and $V(t)=1+t^{2}$ for $0 \leq t \leq 3$.
8.1 Find the equations for the density ρ of the insect as a function of time.
8.2 Find the derivative of the density of the insect
9. Sketch the graph of any function with a negative second derivative.

10. Which point on the given graph is:
10.1 a critical point.
10.2 a point of inflection.
10.3 a point with a negative derivative
10.4 a point with a positive second derivative.
[1]

[1]
[1]

1]
11. Given $f(t)=t+2 \cos t$ for $0 \leq t \leq \pi$, where the first and the second derivatives of f are $f^{\prime}(t)=1-2 \sin t$ and $f^{\prime \prime}(t)=-2 \cos t$ respectively.
11.1 Find the critical points of f.
11.2 Determine the curvature.
11.4 Sketch the graph of f

[TOTAL 40]

