UNIVERSITY OF JOHANNESBURG

FACULTY OF SCIENCE

DEPARTMENT OF PURE AND APPLIED MATHEMATICS

MODULE MAT1C3E (CALCULUS SECTION)
BIO & ENVIRO MATHS AND STATS

CAMPUS APK

EXAM JUNE 2016

DATE: 26 MAY 2016 **SESSION:** 08:30 – 10:30

ASSESSOR: MR. T. MOHUBEDU

INTERNAL MODERATOR: MR. V. VAN APPEL

DURATION: 60 MINUTES **MARKS:** 40

SURNAME AND INITIALS: _______

STUDENT NUMBER: ______

CONTACT NUMBER: _____

Please read the following instructions carefully

- 1. Answer all questions on the paper in pen.
- 2. This paper consists of 9 pages including the cover page.
- 3. Show all calculations.
- 4. Calculators are allowed.

	** 1 1 1 1	(0)2
1.	Use the binomial Theorem to expand	$(2x + y)^{3}$.

[2]

2. Given
$$f(x) = \cos x + \ln x$$

2.1 Find the first derivative of
$$f$$
.

[1]

2.2 Find the second derivative of
$$f$$
.

[1]

3. Find
$$f'$$
 given $f(x) = \ln(\cos 3x)$

[2]

4. Use the product rule for derivatives to find the derivative of

[2]

$$f(x) = (x^2 - 3)(-2x^2 + 1)$$

5. Use the product rule for derivatives to find the derivative of [3]

$$f(x) = \frac{e^x}{1 + \sin x}$$

- 6. Given $x^2 + xy y^2 + 1 = 0$
 - 6.1 Use implicit differentiation to find y'.

[3]

6.2 Find the slope of the tangent line(s) to f at x = 0

[3]

7.	7. An object is tossed upward at $10 m/s$ from a height of $150 m$. The disground is given by $M(t) = 150 + 10t - 4.9t^2$.		
	7.1	Find the time when the object reaches a critical point.	[2]
	7.2	Find the maximum height of the object.	[1]
	7.3	Find the time when the object hits the ground.	[2]

	7.4	Find the objects' speed when it hits the ground.	[1]
8.		ass M of an object is the product of density ρ and the volume V . If the mass and the e of an insect are given by $M(t) = 3 + t^2$ and $V(t) = 1 + t^2$ for $0 \le t \le 3$.	
	8.1	Find the equations for the density $ ho$ of the insect as a function of time.	[1]
	8.2	Find the derivative of the density of the insect	[2]

Which point on the given graph is: 10.

> a critical point. 10.1

[1]

a point of inflection. 10.2

[1]

a point with a negative 10.3

derivative

[1]

[1]

2 -1

a point with a positive 10.4 second derivative.

- 11. Given $f(t) = t + 2\cos t$ for $0 \le t \le \pi$, where the first and the second derivatives of f are $f'(t) = 1 2\sin t$ and $f''(t) = -2\cos t$ respectively.
 - 11.1 Find the critical points of f.

[3]

[3]

11.2 Determine the curvature.

11.4 Sketch the graph of f

[2]

[TOTAL 40]