
$\frac{\text { UNIVERSITEIT }}{\text { JOHANNESBURG }}$

	DEPARTMENT OF PURE AND APPLIED MATHEMATICS
MODULE	MAT1C2E (CALCULUS SECTION)
BIO \& ENVIRO MATHS AND STATS	
CAMPUS	APK
EXAM	NOVEMBER 2016

DATE: 30 NOVEMBER 2016
ASSESSOR:
INTERNAL MODERATOR:
DURATION: 60 MINUTES

SESSION: 12:30-14:30
MR. T. MOHUBEDU
MR. V. VAN APPEL
MARKS: 40

SURNAME AND INITIALS: \qquad
STUDENT NUMBER: \qquad
CONTACT NUMBER: \qquad

Please read the following instructions carefully

1. Answer all questions on the paper in pen.
2. This paper consists of 9 pages including the cover page.
3. Show all calculations.
4. Calculators are allowed.
5. Given $f(x)=x^{2}+1$ and $g(x)=\sqrt{1-x}$.
1.1 Does the point $(-1,0)$ lie on the graph of f ?
1.2 Find the product $f . g$
1.3 Find the inverse of g.
6. Use the laws of logarithm to simplify: $\log _{2} 3-\log _{2} 4-\log _{2} 6$
7. Find the equation of the straight line that is passing through the points $(-2,1)$ and $(0,-3)$.
8. Given $f(x)=4-x^{2}$
4.1 Find $f^{\prime}(x)$
4.3 Give the interval of increase and decrease.
9. Set up a table to estimate the limit: $\lim _{t \rightarrow 0} \frac{\sin (t)}{2 t}$
10. The temperature of a room (T) is a function of how far the window is open $(W$, in cm^{2}) according to $\mathrm{T}(\mathrm{W})=34-2.5 \mathrm{~W}$. How long you sleep (S, measured in hours) is a function of the temperature according to $S(T)=16.5-0.4 T$
6.1 What is the maximum temperature of the room?
6.2 Find the formula of how long you sleep as a function of how far the window is open.
11. Consider the population $V(t)$ of viruses (in millions) given by $V(t)=15.0 e^{0.65 t}$ where time t is measured in hours.
7.1 Calculate the time at which the number of viruses will double in size. [3]
7.2 Find the equation of the line $\ln (V(t))$ after transforming the variables to create a semilog plot.
12. A population follows the discrete - time dynamical system $b_{t+1}=r b_{t}$ with $r=0.75$ and $b_{0}=8.5$.
8.1 Show that the solution of the system is $b(t)=8.5 e^{-0.288 t}$.
8.2 Sketch the graph of the solution $b(t)$ for $0 \leq t \leq 5$.

	-	-	-	-																	

9. A population has a half - life of 4 years and an initial size of 5×10^{3}.
9.1 What is the population in 12 years?
9.2 Find the equation for population size $P(t)$ as a function of time.
10. Suppose the size (in cm) of an organism at time t (in hours) is given by $S(t)=1.5 e^{t}$. Find the average rate of change in size during the second hour.
11. Find the average, amplitude, period, phase and the equation of the given sinusoidal graph of f.

12. Given $h(t)=2+3 \cos \left(\frac{\pi t}{2}-0.786\right)$
12.1 Write h in standard form
12.2 Sketch the graph of h for $0 \leq t \leq 7$.

