UNIVERSITY OF JOHANNESBURG

FACULTY OF SCIENCE

DEPARTMENT OF PURE AND APPLIED MATHEMATICS

MODULE MAT1C2E (CALCULUS SECTION)
BIO & ENVIRO MATHS AND STATS

CAMPUS APK

EXAM NOVEMBER 2016

DATE: 30 NOVEMBER 2016 **SESSION:** 12:30 – 14:30

ASSESSOR: MR. T. MOHUBEDU

INTERNAL MODERATOR: MR. V. VAN APPEL

DURATION: 60 MINUTES **MARKS:** 40

SURNAME AND INITIALS:	
STUDENT NUMBER:	
CONTACT NUMBER:	

Please read the following instructions carefully

- 1. Answer all questions on the paper in pen.
- 2. This paper consists of 9 pages including the cover page.
- 3. Show all calculations.
- 4. Calculators are allowed.

- 1. Given $f(x) = x^2 + 1$ and $g(x) = \sqrt{1 x}$.
 - 1.1 Does the point (-1,0) lie on the graph of f? [1]

1.2 Find the product f.g [2]

1.3 Find the inverse of g. [2]

2. Use the laws of logarithm to simplify: $\log_2 3 - \log_2 4 - \log_2 6$ [2]

3. Find the equation of the straight line that is passing through the points (-2, 1) and (0, -3). [3]

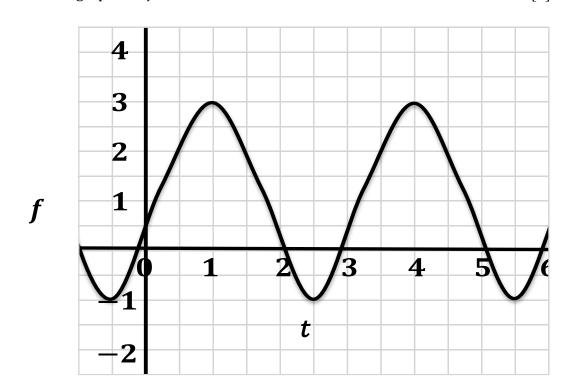
- 4. Given $f(x) = 4 x^2$ 4.1 Find f'(x) [1]
 - 4.3 Give the interval of increase and decrease. [2]

5. Set up a table to estimate the limit: $\lim_{t \to 0} \frac{\sin(t)}{2t}$ [2]

- 6. The temperature of a room (T) is a function of how far the window is open $(W, in \ cm^2)$ according to T (W) = 34 2.5W. How long you sleep (S, measured in hours) is a function of the temperature according to S(T) = 16.5 0.4T
 - 6.1 What is the maximum temperature of the room? [1]
 - 6.2 Find the formula of how long you sleep as a function of how far the window is open. [2]

- 7. Consider the population V(t) of viruses ($in\ millions$) given by $V(t) = 15.0e^{0.65t}$ where time t is measured in hours.
 - 7.1 Calculate the time at which the number of viruses will double in size. [3]

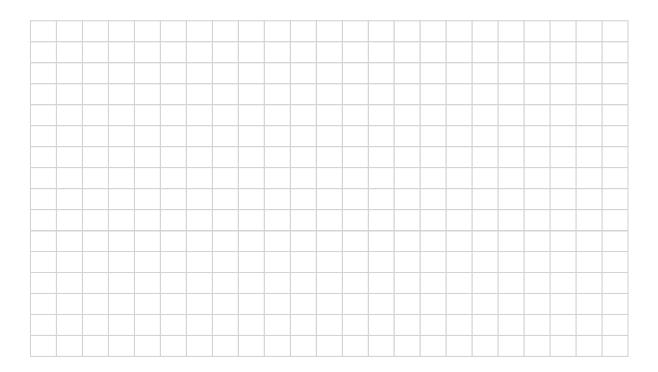
7.2 Find the equation of the line $\ln(V(t))$ after transforming the variables to create a semilog plot. [2]


- 8. A population follows the discrete time dynamical system $\ b_{t+1}=rb_t$ with r=0.75 and $b_0=8.5$.
 - 8.1 Show that the solution of the system is $b(t) = 8.5e^{-0.288t}$. [1]

8.2 Sketch the graph of the solution b(t) for $0 \le t \le 5$. [3]

9.	A population has a half – life of 4 years and an initial size of 5×10^3 .			
	9.1	What is the population in 12 years?	[1]	
	9.2	Find the equation for population size $P(t)$ as a function of time.	[3]	
10.	Suppo	se the size (in cm) of an organism at time t (in $hours$) is given by	$S(t) = 1.5 e^t$	
	Find th	ne average rate of change in size during the second hour.	[2]	

11. Find the average, amplitude, period, phase and the equation of the given sinusoidal graph of f. [3]



12. Given
$$h(t) = 2 + 3\cos\left(\frac{\pi t}{2} - 0.786\right)$$

[1]

12.2 Sketch the graph of
$$h$$
 for $0 \le t \le 7$.

[3]

