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Question 1
Evaluate the following

a)
d

dx
[sinh (x)] (3 marks)

b)

lim
p→∞

1

p4

p∑
n=1

(
n+ n3

)
(3 marks)
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Question 2
Express the following Riemann Sums as definite integrals:

a)

lim
N→∞

N∑
n=1

[
y2ne
−y2ntanh3 (yn)

ln (y6n) tan−1 (yn)

]
∆y (2 marks)

on [a, b], where a and b are some real numbers.

b)

lim
k→∞

k∑
j=1

[
1 + cos

(
z6j
)
−
z2j + 5

z3j + 1

]zj
∆z (2 marks)

on [0, 5].
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Question 3
With appropriate reasoning, state whether or not the following integrals exist.

a) ∫ 1

−1

x+ 6

x2 − 1
dx. (2 marks)

b) ∫ 1

−1
ln
(
|z|+ 5z2 + 5

)
dz. (2 marks)
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Question 4
Determine the following derivatives.

a)

d

dy

[∫ ln(y2)

0

|z| − 5

cos2 (z3) + 3
dz

]
(2 marks)

b)

d

dt

[∫ tetln(2t)

1
t2

(sec (r) cot (r)− 7rr) dr

]
(4 marks)
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Question 5
A toxin is released into a greenhouse and has a concentration (measured by
the unit M), of T (t) at any point in time, t, where t is measured in seconds
(s). If the the toxin’s concentration changes at a rate of

t− 6

t
− 5 Ms−1,

then, from 1 s after the toxin was released, determine the following after
10 s:

a) The net change in the toxin’s concentration;

(4 marks)

b) The total change in the toxin’s concentration.

(3 marks)
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Question 6
Evaluate the following integrals.

a) ∫ T
2

0

[
−5cos2

(
2πt

T − α

)
sin

(
2πt

T − α

)]
dt, (6 marks)

where α ∈ R is constant.

b) ∫ π
6

−π
6

[
cos (x) esin(x) + x3

]
dx (8 marks)

reduce you answer for (b) to a single function.
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Question 7

a) State the Substitution Rule for Definite Integrals.

(1 mark)

b) State the Fundamental Theorem of Calculus Part II.

(1 mark)

c) Prove the Fundamental Theorem of Calculus Part II.

(7 marks)
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