

FACULTY OF SCIENCE UNIVERSITY OF JOHANNESBURG

DEPARTMENT OF PURE AND APPLIED MATHEMATICS		
MODULE	MAT0CB2 Engineering Multivariable and Vector Calculus	
CAMPUS	APK	
EXAM	NOVEMBER 2016	
EXAMINER(S)		MRS C DUNCAN DR U KOUMBA
INTERNAL MODERATOR		MRS C MARAIS
DURATION		2 HOURS
MARKS		50
SURNAME AND INITIALS		
STUDENT NUMBER		
CONTACT NUMBER		
NUMBER OF F	PAGES: 1 +	14
INSTRUCTIONS: 1. ANSWER ALL QUESTIONS ON THE PAPER IN PEN 2. CALCULATORS ARE ALLOWED 3. INDICATE CLEARLY ANY ADDITIONAL PAGES USED		

For questions (1.1) - (1.8), please circle only **ONE** correct answer:

(1.1) Determine the range of the function

$$f(x, y, z) = \frac{3}{\sqrt{1 - x^2 - y^2 - z^2}}$$

- (a) (0,3]
- (b) (0,1]
- (c) $\left[\frac{1}{3},\infty\right)$
- (d) $[3,\infty)$
- (e) $\left[\frac{1}{3}, 3\right]$

(1.2) If $D_{\mathbf{u}}f(0,0) = c$, for any unit vector \mathbf{u} , then c = 0.

- (a) True
- (b) False
- (1.3) Suppose (1, 1) is a critical point of a function f with continuous second derivatives. In the case of $f_{xx}(1,1) = 7$, $f_{xy}(1,1) = 8$, $f_{yy}(1,1) = 10$ what can you say about f?
 - (a) f has a local maximum at (1, 1)
 - (b) f has a saddle point at (1,1)
 - (c) f has a local minimum at (1, 1)
- (1.4) Find the volume of the solid that lies inside the cylinder $x^2 + y^2 = 9$ and the ellipsoid $2x^2 + 2y^2 + z^2 = 36$.
 - (a) 260.31
 - (b) 301.74
 - (c) 261.29
 - (d) 292.45
 - (e) 284.22

(1.5) Find the Jacobian of the transformation $x = 5\alpha \sin \beta$ and $y = 4\alpha \cos \beta$.

- (a) 9α
- (b) $-20\alpha\sin\beta\cos\beta$
- (c) -20α
- (d) $-\alpha$
- (e) 36α
- (1.6) Use Green's Theorem to evaluate $\int_C x^2 y \, dx xy^2 \, dy$, where C is the circle $x^2 + y^2 = 4$ with counterclockwise orientation.
 - (a) -8π
 - (b) -4π
 - (c) 6π
 - (d) 2π
 - (e) none of these

(1.7) Given the position vector $\mathbf{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$, with $|\mathbf{r}| = r$. Then, $\nabla \cdot (9r\mathbf{r}) = 36r$.

- (a) True
- (b) False
- (1.8) The vector field $\mathbf{F} = xyz \,\mathbf{i} + y \,\mathbf{j} + z \,\mathbf{k}$ can always be written as the curl of another vector field.
 - (a) True
 - (b) False

(2.1) Prove that if f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\mathbf{u} = \langle a, b \rangle$ and

$$D_{\mathbf{u}}f(x,y) = f_x(x,y) \, a + f_y(x,y) \, b$$
(4)

(2.2) Given the unit vector $\mathbf{u} = \langle a, b \rangle$ and that f has continuous second partial derivatives, use Clairaut's Theorem to show that

$$D_{\mathbf{u}}^{2} f(x, y) = f_{xx}(x, y) a^{2} + 2f_{xy}(x, y) ab + f_{yy}(x, y) b^{2}$$

[Note that $D_{\mathbf{u}}^{2} f = D_{\mathbf{u}}(D_{\mathbf{u}} f)$] (3)

(2.3) If $f(x,y) = xe^{2y}$, then find $D_{\mathbf{u}}^2 f(0,0)$ in the direction of $\mathbf{v} = \langle 4, 6 \rangle$. (4)

Given
$$V = \int_0^1 \int_0^{1-x^2} \int_0^{1-x} dy dz dx.$$

(3.1) Sketch the region of integration.

(3)

(3.2) Rewrite V in the order dxdydz.

Use appropriate coordinates to set up the integral $\iiint_E y \, dV$, where E is the region that lies below the plane z = x + 2, above the xy-plane and between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

[3]

Consider the double integral

$$\iint_{\Omega} (x+y) \, dx dy$$

with Ω the region bounded by x = y, $x = y + \pi$, x = -2y and $x = -2y + \frac{\pi}{2}$.

(5.1) Determine the transformation T(u, v) = (x, y) such that x = g(u, v) and y = h(u, v), and calculate the associated Jacobian. (3)

(5.2) Using (5.1), solve the integral $\iint_{\Omega} (x+y) dx dy$.

(3)

Consider the vector field $\mathbf{F} = \langle 3x^2 + y, 3xy^2 \rangle$.

(6.1) Determine whether \mathbf{F} is conservative.

- orientation that encloses the region bounded by the graphs of $y = \sqrt{x}$, y = 0 and x = 4.
- (6.2) Consequently, determine the work done by \mathbf{F} along the closed path C, with counter-clockwise

(4)

(2)

Prove that $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in D if and only if $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ for every closed path C in D.

[4]

Determine whether the vector field ${\bf F}$ is incompressible at the point (0,0,3) if given

 $\mathbf{F} = e^x \sin y \, \mathbf{i} - e^x \cos y \, \mathbf{j} + \ln z \, \mathbf{k}$

If $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field on \mathbb{R}^3 and P, Q, and R have continuous second-order partial derivatives, then show that

div curl $\mathbf{F} = 0$.