Faculty of Science University of Johannesburg

Department of Pure and Applied Mathematics		
MODULE	MATOCB2 Engineeri	CULUS
CAMPUS	APK	
EXAM	NOVEMBE	
EXAMINER(S)		MRS C DUNCAN DR U KOUMBA
INTERNAL MO	DERATOR	MRS C MARAIS
DURATION		2 HOURS
MARKS		50

SURNAME AND INITIALS \qquad

STUDENT NUMBER \qquad

CONTACT NUMBER \qquad

NUMBER OF PAGES: $1+14$
INSTRUCTIONS:

1. ANSWER ALL QUESTIONS ON THE PAPER IN PEN
2. CALCULATORS ARE ALLOWED
3. INDICATE CLEARLY ANY ADDITIONAL PAGES USED

For questions (1.1) - (1.8), please circle only ONE correct answer:
(1.1) Determine the range of the function

$$
f(x, y, z)=\frac{3}{\sqrt{1-x^{2}-y^{2}-z^{2}}}
$$

(a) $(0,3]$
(b) $(0,1]$
(c) $\left[\frac{1}{3}, \infty\right)$
(d) $[3, \infty)$
(e) $\left[\frac{1}{3}, 3\right]$
(1.2) If $\mathrm{D}_{\mathbf{u}} f(0,0)=c$, for any unit vector \mathbf{u}, then $c=0$.
(a) True
(b) False
(1.3) Suppose $(1,1)$ is a critical point of a function f with continuous second derivatives. In the case of $f_{x x}(1,1)=7, \quad f_{x y}(1,1)=8, \quad f_{y y}(1,1)=10$ what can you say about f ?
(a) f has a local maximum at $(1,1)$
(b) f has a saddle point at $(1,1)$
(c) f has a local minimum at $(1,1)$
(1.4) Find the volume of the solid that lies inside the cylinder $x^{2}+y^{2}=9$ and the ellipsoid $2 x^{2}+2 y^{2}+z^{2}=36$.
(a) 260.31
(b) 301.74
(c) 261.29
(d) 292.45
(e) 284.22
(1.5) Find the Jacobian of the transformation $x=5 \alpha \sin \beta$ and $y=4 \alpha \cos \beta$.
(a) 9α
(b) $-20 \alpha \sin \beta \cos \beta$
(c) -20α
(d) $-\alpha$
(e) 36α
(1.6) Use Green's Theorem to evaluate $\int_{C} x^{2} y d x-x y^{2} d y$, where C is the circle $x^{2}+y^{2}=4$ with counterclockwise orientation.
(a) -8π
(b) -4π
(c) 6π
(d) 2π
(e) none of these
(1.7) Given the position vector $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$, with $|\mathbf{r}|=r$. Then, $\nabla \cdot(9 r \mathbf{r})=36 r$.
(a) True
(b) False
(1.8) The vector field $\mathbf{F}=x y z \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ can always be written as the curl of another vector field.
(a) True
(b) False
(2.1) Prove that if f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\mathbf{u}=\langle a, b\rangle$ and

$$
\begin{equation*}
D_{\mathbf{u}} f(x, y)=f_{x}(x, y) a+f_{y}(x, y) b \tag{4}
\end{equation*}
$$

(2.2) Given the unit vector $\mathbf{u}=\langle a, b\rangle$ and that f has continuous second partial derivatives, use Clairaut's Theorem to show that

$$
\begin{equation*}
D_{\mathbf{u}}^{2} f(x, y)=f_{x x}(x, y) a^{2}+2 f_{x y}(x, y) a b+f_{y y}(x, y) b^{2} \tag{3}
\end{equation*}
$$

$\left[\right.$ Note that $\left.D_{\mathbf{u}}^{2} f=D_{\mathbf{u}}\left(D_{\mathbf{u}} f\right)\right]$
(2.3) If $f(x, y)=x e^{2 y}$, then find $D_{\mathbf{u}}^{2} f(0,0)$ in the direction of $\mathbf{v}=\langle 4,6\rangle$.

Given $V=\int_{0}^{1} \int_{0}^{1-x^{2}} \int_{0}^{1-x} d y d z d x$.
(3.1) Sketch the region of integration.
(3.2) Rewrite V in the order $d x d y d z$.

Use appropriate coordinates to set up the integral $\iiint_{E} y d V$, where E is the region that lies
below the plane $z=x+2$, above the $x y$-plane and between the cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.

Consider the double integral

$$
\iint_{\Omega}(x+y) d x d y
$$

with Ω the region bounded by $x=y, x=y+\pi, x=-2 y$ and $x=-2 y+\frac{\pi}{2}$.
(5.1) Determine the transformation $T(u, v)=(x, y)$ such that $x=g(u, v)$ and $y=h(u, v)$, and calculate the associated Jacobian.
(5.2) Using (5.1), solve the integral $\iint(x+y) d x d y$.

Consider the vector field $\mathbf{F}=\left\langle 3 x^{2}+y, 3 x y^{2}\right\rangle$.
(6.1) Determine whether \mathbf{F} is conservative.
(6.2) Consequently, determine the work done by \mathbf{F} along the closed path C, with counter-clockwise orientation that encloses the region bounded by the graphs of $y=\sqrt{x}, y=0$ and $x=4$.

Prove that $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of path in D if and only if $\int_{C} \mathbf{F} \cdot d \mathbf{r}=0$ for every closed path C in D.

Determine whether the vector field \mathbf{F} is incompressible at the point $(0,0,3)$ if given

$$
\mathbf{F}=e^{x} \sin y \mathbf{i}-e^{x} \cos y \mathbf{j}+\ln z \mathbf{k}
$$

If $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is a vector field on \mathbb{R}^{3} and P, Q, and R have continuous second-order partial derivatives, then show that

$$
\operatorname{div} \operatorname{curl} \mathbf{F}=0 .
$$

