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Question 1 [8]

For questions (1.1) - (1.8), please circle only ONE correct answer:

(1.1) Determine the range of the function

f(x, y, z) =
3

√

1− x2 − y2 − z2

(a) (0, 3]

(b) (0, 1]

(c)
[

1

3
,∞

)

(d) [3,∞)

(e)
[

1

3
, 3
]

(1.2) If Duf(0, 0) = c, for any unit vector u, then c = 0.

(a) True

(b) False

(1.3) Suppose (1, 1) is a critical point of a function f with continuous second derivatives. In
the case of fxx(1, 1) = 7, fxy(1, 1) = 8, fyy(1, 1) = 10 what can you say about f?

(a) f has a local maximum at (1, 1)

(b) f has a saddle point at (1, 1)

(c) f has a local minimum at (1, 1)

(1.4) Find the volume of the solid that lies inside the cylinder x2 + y2 = 9 and the ellipsoid
2x2 + 2y2 + z2 = 36.

(a) 260.31

(b) 301.74

(c) 261.29

(d) 292.45

(e) 284.22
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(1.5) Find the Jacobian of the transformation x = 5α sin β and y = 4α cos β.

(a) 9α

(b) −20α sin β cos β

(c) −20α

(d) −α

(e) 36α

(1.6) Use Green’s Theorem to evaluate

∫

C

x2y dx− xy2 dy, where C is the circle x2 + y2 = 4

with counterclockwise orientation.

(a) −8π

(b) −4π

(c) 6π

(d) 2π

(e) none of these

(1.7) Given the position vector r = x i+ y j+ z k, with |r| = r. Then, ∇ · (9rr) = 36r.

(a) True

(b) False

(1.8) The vector field F = xyz i+ y j+ z k can always be written as the curl of another
vector field.

(a) True

(b) False
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Question 2 [10]

(2.1) Prove that if f is a differentiable function of x and y, then f has a directional derivative
in the direction of any unit vector u = 〈a, b〉 and

Duf(x, y) = fx(x, y) a+ fy(x, y) b

(4)
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(2.2) Given the unit vector u = 〈a, b〉 and that f has continuous second partial derivatives, use
Clairaut’s Theorem to show that

D2

u
f(x, y) = fxx(x, y) a

2 + 2fxy(x, y) ab+ fyy(x, y) b
2

[Note that D2

u
f = Du(Du f)] (3)
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(2.3) If f(x, y) = xe2y, then find D2

u
f(0, 0) in the direction of v = 〈4, 6〉. (4)
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Question 3 [7]

Given V =

∫

1

0

∫

1−x2

0

∫

1−x

0

dydzdx.

(3.1) Sketch the region of integration. (3)
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(3.2) Rewrite V in the order dxdydz. (4)
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Question 4 [3]

Use appropriate coordinates to set up the integral

∫∫∫

E

y dV , where E is the region that lies

below the plane z = x + 2, above the xy-plane and between the cylinders x2 + y2 = 1 and
x2 + y2 = 4.
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Question 5 [6]

Consider the double integral
∫∫

Ω

(x+ y) dxdy

with Ω the region bounded by x = y, x = y + π, x = −2y and x = −2y + π
2
.

(5.1) Determine the transformation T (u, v) = (x, y) such that x = g(u, v) and y = h(u, v), and
calculate the associated Jacobian. (3)
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(5.2) Using (5.1), solve the integral

∫∫

Ω

(x+ y) dxdy. (3)
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Question 6 [6]

Consider the vector field F = 〈3x2 + y, 3xy2〉.

(6.1) Determine whether F is conservative. (2)

(6.2) Consequently, determine the work done by F along the closed path C, with counter-clockwise
orientation that encloses the region bounded by the graphs of y =

√
x, y = 0 and x = 4.

(4)
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Question 7 [4]

Prove that

∫

C

F · dr is independent of path in D if and only if

∫

C

F · dr = 0 for every closed

path C in D.
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Question 8 [3]

Determine whether the vector field F is incompressible at the point (0, 0, 3) if given

F = ex sin y i− ex cos y j+ ln z k
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Question 9 [3]

If F = P i + Q j + Rk is a vector field on R
3 and P, Q, and R have continuous second-order

partial derivatives, then show that
div curl F = 0.
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