FACULTY OF SCIENCE FAKULTEIT NATUURWETENSKAPPE

DEPARTMENT OF PURE AND APPLIED MATHEMATICS		
MODULE	MATOCA2 Engineering	
CAMPUS	APK	
EXAM	JUNE 2016	
EXAMINER(S)		C DUNCAN
		U KOUMBA
INTERNAL MODERATOR		C MARAIS
DURATION		2 HOURS
MARKS		50

SURNAME AND INITIALS \qquad

STUDENT NUMBER \qquad

CONTACT NUMBER \qquad

NUMBER OF PAGES: 1 + 14
INSTRUCTIONS: 1. ANSWER ALL QUESTIONS ON THE PAPER IN PEN
2. CALCULATORS ARE ALLOWED
3. INDICATE CLEARLY ANY ADDITIONAL WORKING OUT

Test the convergence or divergence of the following series:
(1.1) $\sum_{n=1}^{\infty} \frac{\arctan n}{n^{3 / 2}}$
(1.2) $\sum_{k=1}^{\infty} \frac{k^{2} 2^{k-1}}{(-5)^{k}}$
(1.3) $\sum_{n=2}^{\infty}(-1)^{n} \frac{1+n^{-1}}{n}$
(2.1) State and prove the Direct Comparison Test.
(2.2) Determine the convergence or divergence of the series $\sum_{n=1}^{\infty}\left(n^{3}+1\right)^{-1 / 2}$.

Your lecturer wants you to determine the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. Answer the following questions pertaining to this sum:
(3.1) Verify that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is convergent.
(3.2) Give the Maclaurin series for $f(x)=\frac{1}{1+x}$.
(3.3) Deduce an expansion of $g(x)=\frac{1}{1+e^{-x}}$ in powers of e^{-x}.
(3.4) Given that $g(x)=e^{x} h(x)$, prove that $\int_{0}^{\infty} h(x) d x=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. [Hint: Use part (3.3)]
(3.5) Using only techniques of integration, evaluate $\int_{0}^{\infty} \frac{e^{-x}}{1+e^{-x}} d x$.
(3.6) Hence, provide the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.

Use power series expansion to evaluate the following limit

$$
\lim _{x \rightarrow 0} \frac{\cos \left(x^{2}\right)-1}{x^{4}}
$$

Find the sum of the following series

$$
3+\frac{9}{2!}+\frac{27}{3!}+\frac{81}{4!}+\ldots
$$

Let $\mathbf{r}(t)=\left\langle\sqrt{t}, \frac{\ln t}{t^{2}-1}, 2 t^{2}\right\rangle$.
(6.1) Determine $\lim _{t \rightarrow 1} \mathbf{r}(t)$.
(6.2) Is $\mathbf{r}(t)$ continuous at $t=1$? Motivate your answer clearly.

The helix $\mathbf{r}_{1}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}$ intersects the curve $\mathbf{r}_{2}(t)=(1+t) \mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k}$ at the point $(1,0,0)$. Find the angle of intersection of these curves.

Prove that the curvature of the curve given by the vector function $\mathbf{r}(t)$ is

$$
\kappa(t)=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}
$$

Consider a curve whose position is given by the vector function

$$
\mathbf{r}(t)=e^{t} \cos t \mathbf{i}+\mathbf{j}+e^{t} \sin t \mathbf{k}
$$

(9.1) Reparametrise the above curve with respect to arc length measured from the point $(1,1,0)$ in the direction of increasing t.
(9.2) Determine at what position we are on the curve after we have traveled a distance of $\sqrt{2}$ units.

Let \mathbf{v} be the velocity, v the speed and \mathbf{a} the acceleration of a particle whose position is given by the vector function \mathbf{r}.
(10.1) Prove that $\mathbf{a}=v^{\prime} \mathbf{T}+\kappa v^{2} \mathbf{N}$
(10.2) Let C be the curve given by the position vector $\mathbf{r}(t)=\left\langle 3 t,-t, t^{2}\right\rangle$. Determine the tangential component of the acceleration of a particle moving along the curve C.

