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Question 1 [7]

Test the convergence or divergence of the following series:

(1.1)
∞
∑

n=1

arctann

n3/2
(3)

1



(1.2)
∞
∑

k=1

k2 2k−1

(−5)k
(2)

(1.3)
∞
∑

n=2

(−1)n
1 + n−1

n
(2)
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Question 2 [7]

(2.1) State and prove the Direct Comparison Test. (5)
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(2.2) Determine the convergence or divergence of the series
∞
∑

n=1

(n3 + 1)
−1/2

. (2)
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Question 3 [11]

Your lecturer wants you to determine the sum of the series
∞
∑

n=1

(−1)n+1

n
. Answer the following

questions pertaining to this sum:

(3.1) Verify that
∞
∑

n=1

(−1)n+1

n
is convergent. (2)

(3.2) Give the Maclaurin series for f(x) =
1

1 + x
. (1)

5



(3.3) Deduce an expansion of g(x) =
1

1 + e−x
in powers of e−x. (2)

(3.4) Given that g(x) = ex h(x), prove that

∫

∞

0

h(x) dx =
∞
∑

n=1

(−1)n+1

n
.

[Hint: Use part (3.3)] (3)
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(3.5) Using only techniques of integration, evaluate

∫

∞

0

e−x

1 + e−x
dx. (2)

(3.6) Hence, provide the sum of the series
∞
∑

n=1

(−1)n+1

n
. (1)
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Question 4 [3]

Use power series expansion to evaluate the following limit

lim
x→0

cos(x2)− 1

x4
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Question 5 [2]

Find the sum of the following series

3 +
9

2!
+

27

3!
+

81

4!
+ . . .
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Question 6 [4]

Let r(t) =

〈√
t ,

ln t

t2 − 1
, 2t2

〉

.

(6.1) Determine lim
t→1

r(t). (2)

(6.2) Is r(t) continuous at t = 1? Motivate your answer clearly. (2)
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Question 7 [3]

The helix r1(t) = cos t i + sin t j + t k intersects the curve r2(t) = (1 + t) i + t2 j + t3 k at
the point (1, 0, 0). Find the angle of intersection of these curves.
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Question 8 [4]

Prove that the curvature of the curve given by the vector function r(t) is

κ(t) =
|r′(t) × r′′(t)|

|r′(t)|3
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Question 9 [5]

Consider a curve whose position is given by the vector function

r(t) = et cos t i+ j+ et sin t k

(9.1) Reparametrise the above curve with respect to arc length measured from the point
(1, 1, 0) in the direction of increasing t. (4)

(9.2) Determine at what position we are on the curve after we have traveled a distance of√
2 units. (1)
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Question 10 [5]

Let v be the velocity, υ the speed and a the acceleration of a particle whose position is given
by the vector function r.

(10.1) Prove that a = υ′ T+ κυ2 N (3)

(10.2) Let C be the curve given by the position vector r(t) = 〈3t,−t, t2〉. Determine the tangential
component of the acceleration of a particle moving along the curve C. (2)
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