

FACULTY OF SCIENCE

		DEPARTMENT OF MATH	EMATICS	
MODULE:	ASM	IA2B4		
CAMPUS:	API	<		
EXAM:	JUN	E 2016		
DATE:		7 JUNE 2016	SESSION: 12:30 - 15:3	30
ASSESSOR(S):		C MARAIS		
INTERNAL MODERAT	OR:	E JOUBERT		
DURATION:		2 HOURS	MARKS: 50	
SURNAME AND INIT	IALS:			
STUDENT NUMBER:				
CONTACT NR:			_	
NUMBER OF PAGES:	9 PAG	GES		
INSTRUCTIONS:		VER ALL THE QUESTIONS :		

GOOD LUCK!

Question 1

Answer the following True or False questions and give a short justification/counter-example:

a) S_5 has an element of order 6.

[2]

TRUE	
FALSE	

b) The cyclic group $\,\mathbb{Z}_{_{18}}\,/\big<6\big>$ is isomorphic to $\,\mathbb{Z}_{_{6}}\,.$

[2]

TRUE	
FALSE	

c) If G and H are cyclic groups, then $G \times H$ is cyclic.

[2]

TRUE	
FALSE	

d) If φ is a homomorphism with $Ker \varphi = \left\{e\right\}$ then φ is 1-to-1.

[2]

TRUE	
FALSE	

Question 2

a) Let G be an Abelian group and let $H=\left\{a\in G:a^2=e\right\}$ be a subset of G . Use the Two-Step-Subgroup Test to show that H is a subgroup of G . [5]

b) Show that H as defined in a) is not a subgroup of G if G is not Abelian by giving a counter-example. [2]

ASMA2B4 -4-

Question 3

Let $G = (\mathbb{Z}, +)$ and let $G' = (\{n \in \mathbb{Z} : n \text{ is even}\}, +)$. Show that G and G' are isomorphic by showing that the function $\varphi : G \to G'$ defined by $\varphi(n) = 2n$ is an isomorphism. [3]

Question 4

Let $G=GL(2,\mathbb{Q})$, the set of all invertible 2x2 matrices with rational entries and with matrix multiplication as operation. Let $H=\left\{\left[\begin{array}{cc} 1 & a \\ 0 & 1 \end{array}\right]: a\in\mathbb{Q}\right\}$ be a subgroup of G . Show that H is not a normal subgroup of G, i.e. find a $g\in G$ such that $ghg^{-1}\not\in H$ for some $h\in H$.

ASMA2B4 -5 -

Question 5

Let
$$G = \left\{ \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \in M_{33} : a,b,c \in \mathbb{R} \right\}$$
 be a subgroup of $GL(3,\mathbb{R})$ (with matrix multiplication as operation).

a) Show that the function
$$\varphi \left[\begin{array}{ccc} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{array} \right] = (a,c)$$
 is a group homomorphism from G to

[3]

$$\mathbb{R}\oplus\mathbb{R}\,$$
 (with component-wise addition as operation).

b) Find the kernel of
$$\varphi$$
 . [2]

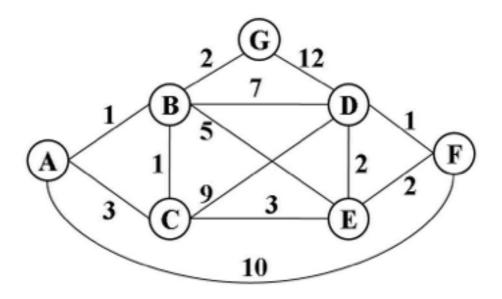
ASMA2B4 - 6 -

Question 6

Let $\varphi:G\to G'$ be a one-to-one homomorphism. Show that if $y^3=e$ for all $y\in G'$, then $x^3=e$ for all $x\in G$.

Question 7

a) Let H be a subgroup of a group . Prove that H is normal in G if and only if $xHx^{-1}\subseteq H$ for $x\in G$. [4]


b) Let φ be a homomorphism from a group G_1 to a group G_2 . Given that $Ker\varphi$ is a subgroup of G_1 , prove that $Ker\varphi$ is normal.

c) Let φ be a homomorphism from a group G_1 to a group G_2 , and $\psi:G_1$ / $Ker \varphi \to \varphi(G_1)$ an isomorphism. Show that ψ is well-defined. [3]

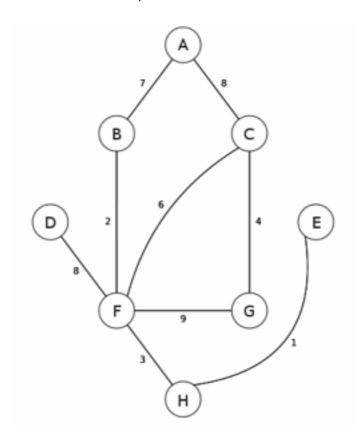
ASMA2B4 -8 -

Question 8

Consider the graph below and answer the following questions:

a) Use the Floyd-Warshall algorithm to determine which vertices are connected and to find the shortest paths for these vertices. You may use the table below for your final answer. [4]

	A	В	C	D	Е	F	G
A							
В							
C							
D							
Е							
F							
G							


b) What is the shortest distance from A to F? Give the path to follow to obtain this distance. [

[2]

ASMA2B4 - 9 -

Question 9

Consider the graph below and answer the questions that follow:

a) Suppose that Dijksra's algorithm is run to determine the shortest path from A to H in the graph.
Complete the following table:

Step	A	В	С	D	E	F	G	Н	Last Trans fer	Perm
Initial	(-,0)	(-,∞)	(-,∞)	(-,∞)	$(-,\infty)$	(-,∞)	$(-,\infty)$	$(-,\infty)$	Α	{A}
1										
2										
3										
4										
5										
6										

b) Now, write down the shortest path from A to H as read from the table in a). What is the length of this path? [2]