FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS		
MODULE: ASMA2B4		
CAMPUS: A	APK	
EXAM: J	JUNE 2016	
DATE:	7 JUNE 2016	SESSION: 12:30-15:30
ASSESSOR(S):	C MARAIS	
INTERNAL MODERATOR:	: E JOUBERT	
DURATION:	2 HOURS	MARKS: 50

SURNAME AND INITIALS:

STUDENT NUMBER:

CONTACT NR:

NUMBER OF PAGES: 9 PAGES

INSTRUCTIONS: ANSWER ALL THE QUESTIONS IN PEN YOU MAY NOT USE A CALCULATOR GOOD LUCK!

Question 1

Answer the following True or False questions and give a short justification/counter-example:
a) S_{5} has an element of order 6 .
b) The cyclic group $\mathbb{Z}_{18} /\langle 6\rangle$ is isomorphic to \mathbb{Z}_{6}.
c) If G and H are cyclic groups, then $G \times H$ is cyclic.
d) If φ is a homomorphism with $\operatorname{Ker} \varphi=\{e\}$ then φ is 1-to-1.

Question 2
a) Let G be an Abelian group and let $H=\left\{a \in G: a^{2}=e\right\}$ be a subset of G. Use the Two-StepSubgroup Test to show that H is a subgroup of G.
b) Show that H as defined in a) is not a subgroup of G if G is not Abelian by giving a counterexample.

Question 3
Let $G=(\mathbb{Z},+)$ and let $G^{\prime}=(\{n \in \mathbb{Z}: n$ is even $\},+)$. Show that G and G^{\prime} are isomorphic by showing that the function $\varphi: G \rightarrow G^{\prime}$ defined by $\varphi(n)=2 n$ is an isomorphism.

Question 4

Let $G=G L(2, \mathbb{Q})$, the set of all invertible 2×2 matrices with rational entries and with matrix multiplication as operation. Let $H=\left\{\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]: a \in \mathbb{Q}\right\}$ be a subgroup of G. Show that H is not a normal subgroup of G, i.e. find a $g \in G$ such that $g h g^{-1} \notin H$ for some $h \in H$.

Question 5

Let $G=\left\{\left[\begin{array}{ccc}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right] \in M_{33}: a, b, c \in \mathbb{R}\right\}$ be a subgroup of $G L(3, \mathbb{R})$ (with matrix multiplication as operation).
a) Show that the function $\varphi\left(\left[\begin{array}{lll}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right]\right)=(a, c)$ is a group homomorphism from G to $\mathbb{R} \oplus \mathbb{R}$ (with component-wise addition as operation).
b) Find the kernel of φ.

Question 6

Let $\varphi: G \rightarrow G^{\prime}$ be a one-to-one homomorphism. Show that if $y^{3}=e$ for all $y \in G^{\prime}$, then $x^{3}=e$ for all $x \in G$.

Question 7
a) Let H be a subgroup of a group. Prove that H is normal in G if and only if $x H x^{-1} \subseteq H$ for $x \in G$.
b) Let φ be a homomorphism from a group G_{1} to a group G_{2}. Given that $\operatorname{Ker} \varphi$ is a subgroup of G_{1}, prove that $\operatorname{Ker} \varphi$ is normal.
c) Let φ be a homomorphism from a group G_{1} to a group G_{2}, and $\psi: G_{1} / \operatorname{Ker} \varphi \rightarrow \varphi\left(G_{1}\right)$ an isomorphism. Show that ψ is well-defined.

Question 8

Consider the graph below and answer the following questions:

a) Use the Floyd-Warshall algorithm to determine which vertices are connected and to find the shortest paths for these vertices. You may use the table below for your final answer.

	A	B	C	D	E	F	G
A							
B							
C							
D							
E							
F							
G							

b) What is the shortest distance from A to F? Give the path to follow to obtain this distance.

Question 9

Consider the graph below and answer the questions that follow:

a) Suppose that Dijksra's algorithm is run to determine the shortest path from A to H in the graph. Complete the following table:

Step	A	B	C	D	E	F	G	H	La Tran fe	Perm
Initial	$(-, 0)(-, \infty)(-, \infty)(-, \infty)(-, \infty)(-, \infty)(-, \infty)(-, \infty)$								A	$\{\mathrm{A}\}$
1										
2										
3										
4										
5										
6										

b) Now, write down the shortest path from A to H as read from the table in a). What is the length of this path?

