

FACULTY OF SCIENCE

DEPARTMENT OF PURE AND APPLIED MATHEMATICS						
MODULE	ULE ASMA2A1 SEQUENCES, SERIES AND VECTOR CALCULUS					
CAMPUS APK						
EXAM	NOVEMBER 2016					
EXAMINER		DR F SCHULZ				
INTERNAL MO	DERATOR	MRS C DUNCAN				
DURATION		2.5 HOURS				
MARKS		50				
SURNAME ANI	DINITIALS					
STUDENT NUMBER						
IDENTITY NUM	BER					
NUMBER OF	PAGES:	1 + 13				
INSTRUCTIONS: 1. ANSWER ALL QUESTIONS ON THE PAPER IN PEN 2. CALCULATORS ARE ALLOWED 3. INDICATE CLEARLY ANY ADDITIONAL WORKING OUT						

 $\frac{\textbf{Question 1}}{\text{Use the precise definition of a limit of a sequence to show that}}$

$$\lim_{n \to \infty} \frac{3n^2 + 1}{2n^2 + n} = \frac{3}{2}.$$

 $\frac{\textbf{Question 2}}{\text{State and prove the Alternating Series Test.}}$

 $\frac{\textbf{Question 3}}{\text{Test the following series for convergence or divergence:}}$

(3.1) $\sum_{n=1}^{\infty} (-1)^n \left(\arctan n - \frac{\pi}{2} \right)$ (4)

[8]

(3.2) $\sum_{n=1}^{\infty} b^{\ln n}$, where $b \in \mathbb{R}$ satisfies $0 < b < e^{-1}$. **Hint:** Show that the series is a *p*-series. (4)

Question 4 Prove or disprove: If $\sum a_n$ and $\sum b_n$ are convergent series, then $\sum a_n b_n$ is a convergent series. [3]

Question 5

(5.1) Use Taylor's Inequality and the fact that $\lim_{n\to\infty} \frac{x^n}{n!} = 0$ for all $x \in \mathbb{R}$ to show that (3)

$$e^{2x} = \sum_{n=0}^{\infty} \frac{2^n x^n}{n!}$$
 for all $x \in \mathbb{R}$.

[7]

(5.2) By using the result in (5.1), find a Maclaurin series expansion for $f(x) = \cosh(2x)$. (2)

(5.3) Why can we conclude from (5.2) that $f(x) \ge 1 + 2x^2 + \frac{2}{3}x^4$ for all $x \in \mathbb{R}$? (2)

 $\frac{\textbf{Question 6}}{\textbf{Consider the approximation}}$

$$\sin x \approx x - \frac{x^3}{3!} + \frac{x^5}{5!}.$$

For what values of x is this approximation accurate to within 10^{-4} ?

[2]

Question 7

For questions (7.1) - (7.5), please circle only **ONE** correct answer:

(7.1) Two particles travel along the space curves

$$\mathbf{r}_{1}(t) = \langle \cos t, \sin^{2} t, t^{2} - 4\pi^{2} \rangle$$
 and $\mathbf{r}_{2}(t) = \langle 1 + t, t^{2}, t^{3} \rangle$.

What can be said about the motion of the particles?

- (a) The particles collide.
- (b) The paths of the particles intersect, but they do not collide.
- (c) The paths of the particles do not intersect.
- (d) None of the above.

(7.2) If
$$\mathbf{r}'(t) = \langle t^2, t \cos \pi t, \sin \pi t \rangle$$
 and $\mathbf{r}(0) = \langle 0, \frac{1}{\pi^2}, -\frac{1}{\pi} \rangle$, then

(a)
$$\mathbf{r}(t) = \left\langle \frac{t^3}{3}, \frac{t}{\pi} \sin \pi t + \frac{1}{\pi^2} \cos \pi t, -\frac{1}{\pi} \cos \pi t \right\rangle.$$

(b) $\mathbf{r}(t) = \left\langle \frac{t^3}{3}, \frac{t}{\pi} \cos \pi t - \frac{1}{\pi^2} \sin \pi t, -\frac{1}{\pi} \cos \pi t \right\rangle.$
(c) $\mathbf{r}(t) = \left\langle \frac{t^3}{3}, -\frac{t}{\pi} \sin \pi t - \frac{1}{\pi^2} \cos \pi t, \frac{1}{\pi} \cos \pi t \right\rangle.$
(d) $\mathbf{r}(t) = \left\langle \frac{t^3}{3}, \frac{t}{\pi} \sin \pi t - \frac{1}{\pi^2} \cos \pi t, \frac{1}{\pi} \cos \pi t \right\rangle.$

(7.3) If $\mathbf{r}(t)$ is a differentiable vector function, then

$$\frac{d}{dt}\left|\mathbf{r}(t)\right| = \left|\mathbf{r}'(t)\right|.$$

(a)	True	(b)	False
-----	------	-----	-------

(7.4) Suppose that \mathbf{u} and \mathbf{v} are differentiable vector functions, and that f is a differentiable real-valued function. Consider the following differentiation formulas:

(i)
$$\frac{d}{dt} [\mathbf{u}(t) \cdot \mathbf{v}(t)] = \mathbf{v}'(t) \cdot \mathbf{u}(t) + \mathbf{u}'(t) \cdot \mathbf{v}(t).$$

(ii) $\frac{d}{dt} [\mathbf{u}(t) \times \mathbf{v}(t)] = \mathbf{v}'(t) \times \mathbf{u}(t) + \mathbf{u}'(t) \times \mathbf{v}(t)$
(iii) $\frac{d}{dt} [\mathbf{u} (f(t))] = f'(t)\mathbf{u}' (f(t)).$

Which of the above statements are always true?

 $(a) i, ii, iii \qquad (b) i, ii \qquad (c) iii \qquad (d) i, iii \qquad (e) ii, iii$

- (7.5) The curvature of $y = e^x$ at x = 0 is
 - (a) $\frac{1}{2\sqrt{2}}$ (b) $\frac{1}{\sqrt{2}}$ (c) $\frac{1}{2}$ (d) $\frac{1}{2\sqrt{3}}$ (e) 2

[5]

(1)

(1)

(1)

(1)

(1)

 $\frac{\textbf{Question 8}}{\text{Find the length of the curve}}$

$$\mathbf{r}(t) = \left\langle \frac{t^3}{3}, \frac{t^2}{\sqrt{2}}, t \right\rangle$$

from t = 0 to t = 3.

[4]

Question 9 Show that if there is a $c \in \mathbb{R}$ such that $|\mathbf{r}(t)| = c$ for all t, then $\mathbf{r}'(t)$ is orthogonal to $\mathbf{r}(t)$. [3]

Question 10 Prove that the curvature of a curve C with vector function $\mathbf{r}(t)$ is given by the following formula:[4]

$$\kappa(t) = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}.$$

Question 11 Find the tangential and normal components of the acceleration vector of a particle with position function $\mathbf{r}(t) = \langle t, 2t, t^2 \rangle$. [5]