

FACULTY OF SCIENCE

	DEPARTMENT OF PURE	AND APPLIED MATHEMATICS				
MODULE:	ASMA1A1					
COURSE:	CALCULUS OF ONE VARIABI	CULUS OF ONE VARIABLE FUNCTIONS (ALTERNATIVE SEMESTER)				
CAMPUS:	АРК					
EXAM:	NOVEMBER 2016					
DATE:	28/11/2016					
TIME:	16:30 – 18:30					
ASSESSOR:		MR SD NGIDI				
INTERNAL MOD	DERATOR:	DR A CRAIG				
DURATION:	2 HOURS	MARKS: 70				
SURNAME AND) INITIALS					
STUDENT NUM	IBER					
CONTACT NUM	IBER					
NUMBER OF PA	AGES: 1+12 PAGES (including	front page)				
INSTRUCTION	S: ANSWER ALL THE QU	ESTIONS IN PEN				
	CALCULATORS ARE N	OT ALLOWED.				
	If you require extr	a space, continue on the adjacent blank				
	page next to it and	l indicate this clearly.				

Question 1 [10 marks]

Question	a	b	с	d	e
1.1					
1.2					
1.3					
1.4					
1.5					
1.6					
1.7					
1.8					
1.9					
1.10					

For questions 1.1 - 1.10, choose one correct answer, and make a cross (X) in the correct block.

1.1 The rate of change of x with respect to t is written as:

a) $\frac{dt}{dx}$ b) $\frac{d^2t}{dx^2}$

c)
$$\frac{dt^2}{dt^2}$$

d)
$$\frac{dx}{dt}$$

- e) None of the above
- 1.2 $1 + \cot^2 \theta =$
- a) $\csc \theta$
- b) $\sec \theta$
- c) $\tan^2 \theta$
- d) $1 \sin^2 \theta$
- e) None of the above

1.3 The expansion of $\sum_{i=3}^{5} (-1)^{i} \frac{2^{i}}{i}$ is: a) $-\frac{7}{4} + 3 - \frac{34}{6}$ b) $-\frac{8}{3} + 4 - \frac{32}{5}$ c) $\frac{9}{2} - 2 + \frac{32}{2}$ d) $4 - \frac{3}{8} + 4$

e) None of the above

[1]

[1]

1.4 If f(x) = x³ − 1, g(x) = ³√x² − 1 and h(x) = √x + 2, then (f ∘ g ∘ h)(x) equals: [1]
a) 1
b) −1
c) 2
d) 3
e) None of the above

1.5 Solving $|x+5| \ge 7$ yields [1]

- a) $x \leq -12$ or $x \geq 2$
- b) $-12 \le x \le 2$
- c) $x \leq -10$ or $x \geq 4$
- d) $x \le 14$ or $x \ge -6$
- e) None of the above

1.6 $\int (x^4 - x^{-1} + \sec^2 x) dx$ [1] a) $\frac{1}{5}x^5 - 1 + \tan x + C$ b) $\frac{1}{5}x^5 - \ln |x| + \sec x + C$

c)
$$\frac{1}{5}x^3 - \ln|x| + \tan x + C$$

- d) $\frac{1}{5}x^5 \ln|x| + \sec x \tan x + C$
- e) None of the above

1.7 Find the limit:
$$\lim_{x \to 0} \left(\frac{\sin \pi}{\pi} \right)$$
 [1]

- a) 1
- b) 0
- c) ∞
- d) π
- e) None of these

1.8
$$\frac{d}{dx} [\cos^3(7^x)]$$
 [1]
a) $-\sin^3(7^x) \cdot \ln 7$
b) $3\cos^2(7^x) \cdot \sin(7^x)$
c) $-3\cos^2(7^x) \cdot \sin(7^x) \cdot \ln 7$
d) $-3\cos^2(7^x) \cdot \sin(7^x) \cdot (7^x) \ln 7$
e) None of these

- 1.9 Complete the following identity: $\cosh x \sinh x =$
- a) 1
- b) -1
- c) e^x
- d) e^{-x}
- e) None of these

1.10 If
$$\int_{1}^{10} f(x) dx = 20$$
, and $\int_{8}^{10} f(x) dx = 4$, then $\int_{1}^{8} f(x) dx =$ [1]
a) 24

- b) 16
- c) 5
- d) -16
- e) None of these

Question 2 [7 marks]

- a) Rewrite the first-order statement in natural language $\forall x \in \mathbb{R}, x^2 \ge 0 \rightarrow x > 0$ [1]
- b) Write the negation of the sentence given in 2 a) using natural language. [2]

c) Use logical equivalences to rewrite the statement in 'If then' form using natural language: "Sandile wakes up early or he misses the bus to school" [2]

d) Let p and q be true propositions and let r be false proposition. Determine the truth value of:

$$\neg(\neg(\neg r \land (p \to \neg q)))$$

[2]

Question 3 [11 marks]

a) Solve for x:

$$\frac{x}{x^2 + 2x - 3} < -\frac{2}{x^2 + 2x - 3}$$

[4]

b) If f is the function defined below, determine whether f is even, odd or neither:

$$f(x) = 2 - 3\cos x$$
[2]

c) Determine the inverse of $f(x) = 3\ln(1 - e^x)$.

d) Sketch the graph of $\csc \theta$ for $0 < \theta < \pi$. Indicate the co-ordinates of any turning points and label the asymptotes. [2]

Question 4 [2 marks]

- Let $f(x) = 2\ln(x-1) + 1$ find:
- a) the domain of f(x).
- b) the range of f(x)

$\underline{\text{Question 5}} \ [4 \text{ marks}]$

Determine:

a)
$$\lim_{x \to -2} \frac{x^4 - 16}{x + 2}$$
 [2]

b)
$$\lim_{x \to -\infty} \frac{\sqrt{4x^6 - x}}{x^3 + 5}$$

[2]

[1]

$\underline{\text{Question } 6} \ [6 \ \text{marks}]$

a) Sketch

$$f(x) = \begin{cases} e^{-x} & \text{if } x < 0\\ \tan x & \text{if } x \ge 0 \end{cases}$$
[3]

b) Is f(x) continuous at x = 0? Explain.

c) Is f(x) differentiable at x = 0? Explain.

d) Explain why the function

$$f(x) = \ln |x - 2|$$
bus at $x = 2$. [1]

is discontinuous at x = 2.

[1]

Question 7 [3 marks]

If $\tan \theta = -\sqrt{3}$ and $\pi < \theta < 2\pi$, find the five other trigonometric ratios. [3]

 $\underline{\text{Question 8}} [3 \text{ marks}]$

If $f(x) = \frac{1}{3\sqrt{x}}$ determine f'(x) by making use of first principles. [3]

Question 9 [3 marks]

Find the equation of the tangent line to the curve at the given point

$$y = \frac{4x}{x^2 + 3}, \quad x = 3$$
 [3]

 $\underline{\text{Question 10}} \ [7 \text{ marks}]$

Differentiate the following functions:

a)
$$f(x) = \sin(4x^3 + 3x + 1)$$
 [1]

b) $e^{xy} + 2y - 3x = \sin y$

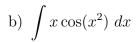
c) By using logarithmic differentiation:
$$y = \left(1 + \frac{1}{x}\right)^x$$
 [3]

 $\underline{\text{Question 11}} [5 \text{ marks}]$

a) State the Fundamental Theorem of Calculus part 1.

[2]

b) Given


$$f(x) = \int_{1}^{\sqrt{x}} \frac{2t^2}{t^4 + 1} \ dt$$

evaluate f'(x) by using part 1 of the Fundamental Theorem of Calculus.

$\underline{\text{Question 12}} \ [5 \text{ marks}]$

Evaluate the following integrals

a)
$$\int_{1}^{4} \left(\sqrt{x} - \frac{1}{x^2}\right) dx$$
 [2]

Prove the product rule: If f and g are both differentiable, then

$$\frac{d}{dx}\left[f(x)g(x)\right] = f(x)\frac{d}{dx}\left[g(x)\right] + g(x)\frac{d}{dx}\left[f(x)\right]$$
[4]