FACULTY OF SCIENCE

```
DEPARTMENT: PURE AND APPLIED MATHEMATICS
    MODULE: APM2A10
    INTRODUCTION TO DIFFERENTIAL EQUATIONS
    CAMPUS: AUCKLAND PARK KINGSWAY
    FINAL EXAMINATION
```

DATE: 26/05/2016
ASSESSORS MR KD ANDERSON

MODERATOR
DURATION: 2 HOURS 30 MINUTES

MR KD ANDERSON
DR MV VISAYA
SESSION: 08:30-11:30

PROF M KHUMALO
MARKS: 50

NUMBER OF PAGES 1 COVER PAGE
1 QUESTION PAGE(S)
1 FORMULA PAGE
INSTRUCTIONS ANSWER ALL THE QUESTIONS.
SHOW ALL CALCULATIONS.
POCKET CALCULATORS MAY BE USED.
SYMBOLS HAVE THEIR USUAL MEANING.

QUESTION 1 [12 MARKS]

Solve

$$
4 y^{\prime \prime}+4 y^{\prime}+y=4 e^{-x / 2}\left(\frac{1}{x}+x\right)
$$

using the method of undetermined coefficients.

QUESTION 2 [13 MARKS]

Solve

$$
y^{\prime \prime}-4 y^{\prime}+4 y=(x+1) e^{2 x}
$$

using the method of variation of parameters.
QUESTION 3 [10 MARKS]
Use the Laplace transform to solve the initial value problem

$$
y^{\prime \prime}+y=1, \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Verify that your answer satisfies the initial conditions.
QUESTION 4 [10 MARKS]
Let f be a piecewise linear function given by

$$
f(t)= \begin{cases}t-1 & 1<t<2 \\ 0 & \text { otherwise }\end{cases}
$$

Use the definition of the Laplace transform to find $\mathcal{L}(f)$.

QUESTION 5 [5 MARKS]

An object with a mass of 16 kilogram stretches a spring $\frac{8}{9}$ metres. The spring is initially displaced $\frac{1}{2}$ metres upwards from its equilibrium position and given an initial velocity of $1 \mathrm{~m} / \mathrm{s}$ downward. Let $\mathrm{g}=32 \mathrm{~m} / \mathrm{s}^{2}$. Write down, without solving, the initial value problem to find the object's displacement $y(t)$ at any time t. Assume that there is no damping and no external forces acting on the system.

