UNIVERSITY OF JOHANNESBURG
FACULTY OF SCIENCE
DEPARTMENT OF APPLIED MATHEMATICS

MODULE: APM1B10
INTRODUCTION TO DYNAMICS
CAMPUS: APK
SUPPLEMENTARY EXAMINATION

DATE: 11/01/2017

ASSESSORS:

INTERNAL MODERATOR:

DURATION: 2 HOURS

SESSION: 08:00-11:00

DR JSC PRENTICE DR M MOLELEKOA
PROF C M VILLET

MARKS: 50

NUMBER OF PAGES: 5 PAGES
INSTRUCTIONS:
SYMBOLS HAVE THEIR USUAL MEANING.
PHYSICAL QUANTITIES ARE IN SI UNITS AND ANGLES ARE IN RADIANS.
CALCULATORS ARE PERMITTED.
WORK TO A PRECISION OF AT LEAST THREE DECIMAL PLACES IN ALL NUMERICAL CALCULATIONS.
ANSWER EACH OF THE FIRST THREE THE QUESTIONS.
ANSWER EITHER QUESTION FOUR OR QUESTION FIVE, NOT BOTH.

QUESTION 1

(a) Show that

$$
\widehat{\theta} \cdot \widehat{n}=\frac{v_{r} a_{n}}{v_{r} a_{\theta}-v_{\theta} a_{r}} .
$$

(b) The equation of the trajectory of a particle is given by

$$
\mathbf{r}(t)=4 t^{3} \widehat{x}-\cos (2 t) \widehat{y} \equiv\left(4 t^{3},-\cos (2 t)\right) .
$$

Find, for $t=\frac{1}{2}$,
(i) \mathbf{v} and \mathbf{a},
(ii) $\widehat{\tau}$ and \widehat{n},
(iii) the tangential and normal components of a,
(iv) the radius of curvature ρ, and the centre of curvature $\mathbf{C}=\mathbf{r}+\rho \widehat{n}$.

QUESTION 2

A force $\mathbf{F}=\left(F_{x}, F_{y}\right)$ acts on a particle, of mass 0.3 kg , for 3 seconds. Here, F_{x} and F_{y} are constants, not necessarily equal. Assume that \mathbf{F} makes an angle θ with the horizontal axis. Assume that the horizontal component of the initial velocity \mathbf{v}_{i} is half the vertical component. Assume that the final velocity \mathbf{v}_{f} has the same magnitude as \mathbf{v}_{i}, but is opposite in direction.
(a) Determine θ.
(b) If the horizontal component of \mathbf{v}_{i} is $10 \mathrm{~ms}^{-1}$ in the negative x-direction, determine F_{x} and F_{y}.

QUESTION 3

Calculate the directional derivative $\frac{\partial \psi}{\partial s}$ of

$$
\psi=-y z+x z^{2}
$$

in the direction

$$
-\widehat{x}+2 \widehat{y}-4 \widehat{z}
$$

at the point

$$
(1,-1,3) .
$$

(a) Use the parameterization $\mathbf{r}=\mathbf{r}_{0}+s \widehat{s}$.
(b) Use $\nabla \psi$.

QUESTION 4

Calculate $\int_{\Gamma} \mathbf{a} \cdot d \mathbf{r}$ with $\mathbf{a}=\left(x^{2} y^{2}, y-3 z, 2 x-z^{2}\right)$, and where the path Γ is defined by

$$
\begin{aligned}
& y=1-x^{2} \\
& z=x^{2}+2 y .
\end{aligned}
$$

In the integral, the lower limit is $(0,1,3)$, and the upper limit is $(1,0,1)$. You should find that the value of the integral is $\frac{533}{105}$.

OR

QUESTION 5

The coefficient of friction between the tyres of a braking car and the road is μ. At the moment the brakes are applied, the car has speed v_{0}. Assume that the road is inclined upwards at an angle θ, and let d denote the distance in which the car comes to a stop. Using the relationship

$$
W=\int_{\Gamma} \mathbf{F} \cdot d \mathbf{r}=\Delta T
$$

show that, if $\theta=\frac{\pi}{4} \operatorname{rad}$ and $\mu=\sqrt{2}-1$,

$$
d=\frac{v_{0}^{2}}{2 g},
$$

where g is the gravitational acceleration. In this problem, the friction is not to be treated as a conservative force, so that the principle of conservation of energy is not applicable.

INFORMATION

$$
\begin{aligned}
\mathbf{r} & =(x, y)=(r \cos \theta, r \sin \theta) \\
\mathbf{v} & =v_{r} \widehat{r}+v_{\theta} \widehat{\theta}=v_{\tau} \widehat{\tau}+v_{n} \widehat{n} \\
& =\dot{r} \widehat{r}+r \ddot{\theta} \widehat{\theta}=v \widehat{\tau} \\
\mathbf{a} & =a_{r} \widehat{r}+a_{\theta} \widehat{\theta}=a_{\tau} \widehat{\tau}+a_{n} \widehat{n} \\
& =\left(\ddot{r}-r \dot{\theta}^{2}\right) \widehat{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \widehat{\theta}=\dot{v} \widehat{\tau}+\left(\frac{v^{2}}{\rho}\right) \widehat{n} \\
\widehat{r} & =(\cos \theta, \sin \theta) \quad \widehat{\theta}=(-\sin \theta, \cos \theta) \\
\widehat{\tau} & =(\cos \psi, \sin \psi) \quad \widehat{n}=(-\sin \psi, \cos \psi)
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{I} & =\int_{t_{i}}^{t_{f}} \mathbf{F} d t=m \mathbf{v}_{f}-m \mathbf{v}_{i} \\
\ddot{x} & =-\omega^{2} x \\
\Rightarrow x & =x_{0} \sin (\omega t+B)
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial \Psi}{\partial s} & =\nabla \Psi \cdot \widehat{s} \\
d \mathbf{r} & =(d x, d y) \text { in two dimensions } \\
d \mathbf{r} & =(d x, d y, d z) \text { in three dimensions }
\end{aligned}
$$

$$
\begin{aligned}
& T=\frac{m(\mathbf{v} \cdot \mathbf{v})}{2}=\frac{m v^{2}}{2} \\
& W=\int_{\Gamma} \mathbf{F} \cdot d \mathbf{r}=\Delta T
\end{aligned}
$$

Newtonian gravity: $\mathbf{F}=-\frac{G M m}{r^{2}} \widehat{r}$

