UNIVERSITY OF JOHANNESBURG

FACULTY OF SCIENCE
DEPARTMENT OF APPLIED MATHEMATICS

MODULE: APM1B10
INTRODUCTION TO DYNAMICS
CAMPUS: APK
DECMBER EXAMINATION

DATE: 01/12/2016

ASSESSORS:

INTERNAL MODERATOR:

DURATION: 2 HOURS

SESSION: 12:30-15:30

DR JSC PRENTICE DR M MOLELEKOA
PROF C M VILLET

MARKS: 50

NUMBER OF PAGES: 5 PAGES
INSTRUCTIONS:
SYMBOLS HAVE THEIR USUAL MEANING.
PHYSICAL QUANTITIES ARE IN SI UNITS AND ANGLES ARE IN RADIANS.
CALCULATORS ARE PERMITTED.
WORK TO A PRECISION OF AT LEAST THREE DECIMAL PLACES IN ALL NUMERICAL CALCULATIONS.
ANSWER EACH OF THE FIRST THREE THE QUESTIONS.
ANSWER EITHER QUESTION FOUR OR QUESTION FIVE, NOT BOTH.

QUESTION 1

(a) Show that

$$
\widehat{r} \cdot \widehat{n}=\frac{v_{\theta} a_{n}}{v_{\theta} a_{r}-v_{r} a_{\theta}} .
$$

(b) The equation of the trajectory of a particle is given by

$$
\mathbf{r}(t)=3 t^{4} \widehat{x}-\sin (2 t) \widehat{y} \equiv\left(3 t^{4},-\sin (2 t)\right) .
$$

Find, for $t=\frac{1}{2}$,
(i) \mathbf{v} and \mathbf{a},
(ii) $\widehat{\tau}$ and \widehat{n},
(iii) the tangential and normal components of a,
(iv) the radius of curvature ρ, and the centre of curvature $\mathbf{C}=\mathbf{r}+\rho \widehat{n}$.

QUESTION 2

An object of mass $m=1 \mathrm{~kg}$, moving horizontally, hits a windscreen travelling in the opposite direction. The windscreen is tilted at an angle $\theta=\frac{\pi}{4}$ rad to the horizontal. A force \mathbf{F} acts on the object, for a duration of T seconds, such that \mathbf{F} is constant in magnitude and is directed normal (perpendicular) to the windscreen. At impact, the object has speed v_{i} and the windscreen has speed $v_{w}=2 v_{i}$. Impose a frame of reference in which the windscreen is stationary, and in which gravity acts in the usual downward direction. Show that, if the object bounces vertically upwards off the windscreen at $2 \mathrm{~ms}^{-1}$, then

$$
T=\frac{3 v_{i}-2}{g},
$$

where g is the gravitational acceleration.

QUESTION 3

Calculate the directional derivative $\frac{\partial \psi}{\partial s}$ of

$$
\psi=-x z+y z^{2}
$$

in the direction

$$
3 \widehat{x}-2 \widehat{y}-1 \widehat{z}
$$

at the point

$$
(4,1,-2) .
$$

(a) Use the parameterization $\mathbf{r}=\mathbf{r}_{0}+s \widehat{s}$.
(b) Use $\nabla \psi$.

QUESTION 4

Calculate $\int_{\Gamma} \mathbf{a} \cdot d \mathbf{r}$ with $\mathbf{a}=\left(z-2 y, 2 x y^{2}, 3 x-z^{2}\right)$, and where the path Γ is defined by

$$
\begin{aligned}
& y=x^{2}+1 \\
& z=x^{2}-2 y .
\end{aligned}
$$

In the integral, the lower limit is $(0,1,-2)$, and the upper limit is $(1,2,-3)$. You should find that the value of the integral is $\frac{298}{105}$.

OR

QUESTION 5

The coefficient of friction between the tyres of a braking car and the road is μ. At the moment the brakes are applied, the car has speed v_{0}. Assume that the road is inclined upwards at an angle θ, and let d denote the distance in which the car comes to a stop. Using the relationship

$$
W=\int_{\Gamma} \mathbf{F} \cdot d \mathbf{r}=\Delta T
$$

show that, if $\theta=\frac{\pi}{4} \mathrm{rad}$,

$$
v_{0}=\sqrt{\sqrt{2} g d(1+\mu)},
$$

where g is the gravitational acceleration. In this problem, the friction is not to be treated as a conservative force, so that the principle of conservation of energy is not applicable.

INFORMATION

$$
\begin{aligned}
\mathbf{r} & =(x, y)=(r \cos \theta, r \sin \theta) \\
\mathbf{v} & =v_{r} \widehat{r}+v_{\theta} \widehat{\theta}=v_{\tau} \widehat{\tau}+v_{n} \widehat{n} \\
& =\dot{r} \widehat{r}+r \dot{\theta} \widehat{\theta}=v \widehat{\tau} \\
\mathbf{a} & =a_{r} \widehat{r}+a_{\theta} \widehat{\theta}=a_{\tau} \widehat{\tau}+a_{n} \widehat{n} \\
& =\left(\ddot{r}-r \dot{\theta}^{2}\right) \widehat{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \widehat{\theta}=\dot{v} \widehat{\tau}+\left(\frac{v^{2}}{\rho}\right) \widehat{n} \\
\widehat{r} & =(\cos \theta, \sin \theta) \quad \widehat{\theta}=(-\sin \theta, \cos \theta) \\
\widehat{\tau} & =(\cos \psi, \sin \psi) \quad \widehat{n}=(-\sin \psi, \cos \psi)
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{I} & =\int_{t_{i}}^{t_{f}} \mathbf{F} d t=m \mathbf{v}_{f}-m \mathbf{v}_{i} \\
\ddot{x} & =-\omega^{2} x \\
\Rightarrow x & =x_{0} \sin (\omega t+B)
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial \Psi}{\partial s} & =\nabla \Psi \cdot \widehat{s} \\
d \mathbf{r} & =(d x, d y) \text { in two dimensions } \\
d \mathbf{r} & =(d x, d y, d z) \text { in three dimensions }
\end{aligned}
$$

$$
\begin{aligned}
& T=\frac{m(\mathbf{v} \cdot \mathbf{v})}{2}=\frac{m v^{2}}{2} \\
& W=\int_{\Gamma} \mathbf{F} \cdot d \mathbf{r}=\Delta T
\end{aligned}
$$

Newtonian gravity: $\mathbf{F}=-\frac{G M m}{r^{2}} \widehat{r}$

