JOHANNESBURG

FACULTY OF SCIENCE

NUMBER OF PAGES: 13 PAGES
INSTRUCTIONS:

1. ALL QUESTIONS MUST BE ANSWERED
2. ANSWER THE QUESTIONS IN NUMERIC ORDER
3. CALCULATORS ARE NOT PERMITTED TO BE USED
4. WRITE CLEARLY AND LEGIBLY

REQUIREMENTS: NONE

QUESTION 1

(a) Analyse the Java source code below and answer the questions that follow.

```
public static void main(String[] args){
    T[] arr = new T[100];
    for(int i;i<arr.length;i++){
        System.out.println(i+":"+arr[i]);
    }
}
```

1. What is wrong with it?
2. Provide source code that will fix the problem.
(b) Discuss Circular Linked List data structures, along with how it can be used to support other ADT implementations. Provide one disadvantage of list based data structure in ADTs.
(c) Discuss casting within the context of Java and the role it plays in object orientation. Provide Java source code to support your answer.
(d) Consider the following recursive function and provide Java source code for a iterative version of the same function. You may assume all the imports have been provided and if necessary you may add additional parameters to the function.
```
public static int Ack(int m, int n){
    if(m==0 || n==0)
        return m+n+1;
    return Ack(m-1, Ack(m,n-1));
}
```


QUESTION 2

(a) Consider the following function and using primitive counting express the runtime of this function in Big-Oh notation. You should also state your assumptions and which operations should be considered to be primitive.
(b) Discuss how you would implement an iterator for an array-based ADT (make sure you mention which methods need to be implemented and how it will be used).
(c) Discuss the Position ADT, along with the benefits and limitations of using it.
(d) Discuss how the principle of locality can be used to optimise a Sequence ADT. Be sure to include the advantages and disadvantages of using this approach.

```
public static void BS(int [ ] num){
```

public static void BS(int [] num){
int j;
int j;
boolean flag = true;
boolean flag = true;
int temp;
int temp;
while (flag){
while (flag){
flag= false;
flag= false;
for(j=0; j<num.length - 1; j++){
for(j=0; j<num.length - 1; j++){
if (num[j] < num[j+1])}
if (num[j] < num[j+1])}
temp = num[j];
temp = num[j];
num[j] = num[j+1];
num[j] = num[j+1];
num[j+1] = temp;
num[j+1] = temp;
flag = true;
flag = true;
}
}
}
}
}
}
}

```
}
```


QUESTION 3

(a) Consider the following List Interface and write a class Stack that makes use of the List Interface and the Adaptor pattern to realise a Stack $A D T$.

```
public interface IList <T> {
    public Node<T> addAfter(Node<T> elem, T item);
    public Node<T> addFirst(T item );
    public Node<T> addLast(T item);
    public T remove(Node<T> elem);
    public Node<T> search(T elem);
    public Node<T> first();
    public boolean isEmpty();
    public Integer size();
}
```

(b) Discuss the three (3) properties that are used to achieve total order relations for Entries in a Priority Queue.
(c) Discuss the upheap operation found in the Heap ADT, along with its performance.

QUESTION 4

(a) Analyse the Heap key diagram below and draw the heap state for every step in an insert operation for the key value of 1 .

(b) Discuss the Preorder traversal and provide one application example where it can be used.
(c) Discuss Decision Trees, along with the role they play in certain fields, such as Artificial Intelligance.

QUESTION 5

(a) Discuss how you would implement a Dictionary using a Hash Table for the underlying implementation. Be sure to include performance estimates for all the relevant methods in the Dictionary.
(b) Discuss how an insert operation is performed in a Binary Search Tree. You may provide psuedo code or a diagram to support your answer.
(c) Provide a discussion on randomized algorithms, along with the role they play in Skip Lists. As part of your discussion provide an outline of the requirements or assumptions of a randomized algorithm for it to work effectively.

QUESTION 6

Consider the following AVL tree provided below. Provide a graphic representation of the AVL Tree resulting from the following operations. You must provide a graphic representation of each step in the process, including all intermediate operations. Relevant operations must make use of the Inorder successor. Removal operations should follow from the tree that resulted from the insertion operations.

1. Insert nodes that contain the following keys: (inserted one-by-one, in the given order)

$$
84,87,50,4
$$

2. Delete nodes that contain the following keys: (removed one-by-one, in the given order)

$$
84,50,79,48,23,25
$$

The AVL tree is in the current state:

The sequence of operations that result in the current state of the AVL tree can be found in Appendix A on Page 11.

QUESTION 7

Consider the following 2-4 tree provided below. Provide a graphic representation of the 2-4 Tree resulting from the following operations. You must provide a graphic representation of each step in the process, including all intermediate operations. Relevant operations must make use of the Inorder predecessor. Removal operations should follow from the tree that resulted from the insertion operations.

1. Insert nodes that contain the following keys: (inserted one-by-one, in the given order)

$$
72,36,5,68
$$

2. Delete nodes that contain the following keys: (removed one-by-one, in the given order)

$$
72,82,24,68
$$

The 2-4 tree is in the current state (leaf nodes are not shown, however they are assumed to exist):

248294
The sequence of operations that result in the current state of the 2-4 tree can be found in Appendix B on Page 12.

QUESTION 8

Consider the following Red-Black tree provided below. Provide a graphic representation of the Red-Black Tree resulting from the following operations. You must provide a graphic representation of each step in the process, including all intermediate operations. Relevant operations must make use of the Inorder successor. Removal operations should follow from the tree that resulted from the insertion operations.

1. Insert nodes that contain the following keys: (inserted one-by-one, in the given order)

$$
34,59,23,93
$$

2. Delete nodes that contain the following keys: (removed one-by-one, in the given order)

$$
93,45,2,62,59,23,34
$$

The Red-Black tree is in the current state:

The sequence of operations that result in the current state of the Red-Black tree can be found in Appendix C on Page 13.

QUESTION 9

(a) Provide a definition for the following components of a graph:

1. End Vertices
2. Incident Edges
3. Adjacent Vertices
4. Degree of a Vertex
5. Self-loop
(b) Provide an algorithm that releases a Breadth First Search of a graph.
(c) In terms of a Graph Data Structure outline 3 applications, with an appropriate justification, of a graph.

A AVL Tree Operations

Insert 25:

Insert 48:

Insert 79:

Rebalancing:

Insert 23:

B 2-4 Tree Operations

Insert 82:

Insert 94:

Insert 24:

C Red-Black Tree Operations

Insert 2:

Set Root Black:

Insert 26:

Insert 62:

Double Red: 1. Trinode Restructure:

Insert 45:

Double Red: 2.1 Recolouring:

