

FACULTY OF SCIENCE

ACADEMY OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING

MODULE CSC2B10

COMPUTER SCIENCE 2B

CAMPUS AUCKLAND PARK CAMPUS (APK)

SSA EXAM

DATE: 2017-01 **SESSION:** 08:30 - 10:30

ASSESOR(S): DR D.T. VAN DER HAAR

MR M. CILLIERS

MODERATOR: MR A. MAGANLAL

DURATION: 120 MINUTES **MARKS:** 100

Please read the following instructions carefully:

- 1. Answer **all** the questions
- 2. Write cleanly and legibly.
- 3. You may use a non-programmable calculator to answer the questions.
- 4. This paper consists of 6 pages.

SECTION A - Theory

QUESTION 1

(a) What is the Internet? [02]

(b) List three (3) of the **layers** in the Internet Protocol Stack.

[03]

Total: 5

QUESTION 2

Assume there is a copper network with 5 nodes (N1, N2, N3, N4 and N5) and the transmission rates between these nodes are as follows:

It is also determined that the distances between the nodes are as follows:

■ N1-N2: 3km ■ N2-N3: 80km ■ N2-N4: 3km ■ N3-N5: 9km

Answer the following questions:

- (a) Determine the **approximate transmission rate** when communicating between N1 [01] and N5.
- (b) Taking this **approximate transmission rate** into account, how *long* (in seconds) [02] will it take to transfer a 360 Megabit **file** from node N1 to N5?
- (c) If it is determined that the copper installed in this network **propagates** a signal at a speed of 300 000 km/s. *Calculate* the **propagation delay** for communications between N1 to N5.
- (d) Assuming there is no nodal processing delay or queueing delay, *calculate* the **total** [04] **time** taken to transfer a 360 Megabit file from from N1 to N5?

Total: 10

QUESTION 3

Dicsuss the **peer-to-peer** architecture, along with what makes it **better** than the client-server architecture.

Total: 5

QUESTION 4

The following question is about the **FTP** protocol.

(a) What does **FTP** stand for?

[01]

(b) What port(s) does the **FTP** protocol run on?

[02]

(c) What is the purpose of the **FTP** protocol?

[02]

Total: 5

QUESTION 5

(a) *Discuss* how **connection-oriented** demultiplexing works within the context of the transport layer.

(b) Define **flow control** within the context of the transport layer.

[02]

[04]

(c) *Describe* for each of the following mechanisms, which problem they address in order to achieve reliability:

[04]

- 1. Timers
- 2. Pipelining
- 3. Acknowledgments
- 4. Sequence numbering

Total: 10

QUESTION 6

The table below represents the payload of a UDP segment. Calculate the **sum** of the following two 16-bit integers, along with their associated 1s complement **checksum**:

Write down just the sum and checksum in your answer sheet

Number 1	1	0	1	0	0	1	0	1	0	1	0	0	1	0	1	1
Number 2	1	0	1	0	0	1	0	0	1	0	1	1	0	0	0	0
Sum																
	1															

Total: 5

QUESTION 7

(a) Why is a datagram buffer needed on the output port of a router?

[2]

(b) Explain why distance vector algorithms are susceptible to interference.

[4]

[4]

(c) Discuss how ICMP can be used to find a routing path between two hosts.

Total: 10

QUESTION 8

Given the following IP address and CIDR, answer the questions that follow:

42.1.220.13/23

(a) Provide this address in binary notation.	[02]
(b) How many hosts can this network accommodate?	[02]
(c) Assuming classful addressing was used, what class does this address belong to?	[02]
(d) Calculate the network address of this block in dotted decimal notation.	[02]
(e) Calculate the broadcast address of this block in dotted decimal notation.	[02]

Total: 10

QUESTION 9

Given the below network **routing graph** (with costs), answer the following questions that follow:

- (a) What is the path with the **least cost** when communicating between N1 and N5. Is this the **only** cost effective path?
- (b) Given the local datagram **forwarding table** for node N2 below and the destination address is 11100000 01110011 00100000 00010011, which link will this packet be forwarded to? What is this lookup technique called?

Destination Address range	Output Link Interface
10100111 01110011 00100000 00011***	N1
10100111 01110011 00100000 000110**	N3
10100111 01110011 00100000 000111**	N4
Otherwise	N6

Total: 5

[4]

[6]

QUESTION 10

(a) **Describe** the steps that will be taken during reverse ARP process.

(b) **Name** and **describe** two kinds of errors that can occur when transmitting data on the link layer. Your discussion should **include** methods that can be used to detect these errors.

Total: 10

SECTION B - Practical

QUESTION 11

(a) Discuss how resource **security** is handled for an android application

[03]

(b) Which windows command can be used to check the content of the rooting table.

[02]

Total: 5

QUESTION 12

Provide Java source code for a method named sendImage which will send an **image** using TCP and ImageIO. The destination address, destination port and a BufferedImage is passed as parameter. You can assume all relevant packages have been imported.

Total: 10

QUESTION 13

The code below illustrates login functionality that was implemented on a server.

Fill in the missing code in your answer booklet.

```
public class SVRHandler implements Runnable
2 {
      Socket client=null;
      BufferedReader reader;
      PrintWriter writer;
      BufferedOutputStream os;
      public SVRHandler(Socket socket)
      client = socket;
10
      try
11
                             __(A)____
13
        os = new BufferedOutputStream(client.getOutputStream());
        writer = new PrintWriter(os);
15
      }
17
      catch(...)
18
19
        ex.printStackTrace();
21
      }
22
23
      public void run()
25
      boolean running = true;
26
27
                              _____(B)_
        String command = (__
29
        String commandSec[] = command.split("\\s");
30
        if(commandSec.length == 0)
31
32
          writer.println("ERROR");
33
          writer.flush();
```

```
running = false;
        }
36
        else if(commandSec[0].equals("LOGIN"))
37
          if(matchUser(commandSec[1], commandSec[2]))
39
40
            writer.println("OK");
41
            (_____[1])
43
          else
44
45
          writer.println("ERROR");
46
47
          writer.flush();
          running = false;
48
          }
        }
        while(running)
51
52
          command = ...;
          commandSec = command.split("\\s");
54
          if(commandSec.length == 0)
55
56
            writer.println("ERROR");
            writer.flush();
58
            running = false;
59
          }
60
62
          else if(commandSec[0].equals("EXIT"))
63
64
            running = false;
          }
66
        }
67
      }
68
      catch(____[1])
69
70
        ex.printStackTrace();
71
72
      finally
74
        try
75
76
          reader.close();
77
          os.close();
78
            _____(E)____[2])
79
        }
80
        catch(...)
81
82
          ex.printStackTrace();
83
        }
      }
85
86
87
      private boolean matchUser(_____(F)____[2])
89
      boolean found = false;
90
      File userFile = new File("users.txt");
91
```

```
92
         try
93
            Scanner scan = new Scanner(userFile);
 94
            while(scan.hasNextLine()&&!found)
 96
               String line = scan.nextLine();
 97
               String lineSec[] = line.split("\\s");
 98
               if(lineSec.length >= 2)
100
                  \textbf{if}((\textit{username.equals}(\textit{lineSec}[0])) \& (\textit{password.equals}(\textit{lineSec}[0])) \& (\textit{password.equals}(\textit{lineSec}[0])) \\
101
                       [1])))
102
                     found = true;
103
104
               }
105
            }
106
            scan.close();
107
         }
108
         catch(...)
109
110
         {
            ex.printStackTrace();
111
112
113
114
         return found;
115
116
117 }
```

Total: 10

The End!