

FACULTY OF SCIENCE

ACADEMY OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING MODULE CSC1A10 Introduction to algorithm development (C++) CAMPUS APK EXAMINATION PAPER B DATE: 2016-05-28 ASSESSOR(S) DR DA COULTER

INTERNAL MODERATOR

DURATION 3 HOURS

SURNAME, INITIALS (or ID NUMBER):_____

STUDENT NUMBER: _____

COMPUTER NR:

CONTACT NR: _____

NUMBER OF PAGES: 3 PAGES

REQUIREMENTS: NON-PROGRAMMABLE CALCULATORS ARE PERMITTED

<u>Marker:</u>			<u>Submi</u>	ssion overseen by:
Sort Rank	<u>Result</u>	Moderation	Correction	Submission
				CD:
				USB:
				EVE:

MR A MAGANLAL

MARKS 100

	Mark sheet	
Surname:		
Initials:		
Computer:		
Competency	Description	Result
C0	Program Design	/10
C1	 Boiler plate code Standard namespace (1) System library inclusion (3) Indication of successful termination of program (1) 	/5
C2	Coding style Naming of variables (1) Indentation (1) Use of comments (1) Use of named constants (1) Program compiles without issuing warnings (1) 	/5
C3	 Functional Abstraction Task decomposition (5) Reduction of repetitive code (5) 	/10
C4	Separate Compilation Header file (1) Guard conditions (2) Inclusion of header file (1) Appropriate content in header file (1) Use of programmer defined namespace (5) 	/10
C5	User Interaction Menu System (5) Appropriate use of input, output and error streams (5) 	/10
C6	 Command Line Argument Handling: Appropriately overloaded main function (1) Handling incorrect argument counts (1) Use of supplied arguments (3) 	/5
C7	 Error Handling Use of assertions (2) Use of conventional error handling techniques (3) 	/5
C8	Pseudo-random number generation (5)	/5
C9	Dynamically allocated two dimensional array handling Allocation (5) Initialisation (5) Deallocation (5) 	/15
C10	Algorithm implementation Logical Correctness (5) Effectiveness / Efficiency of approach (5) Correct use of appropriate selection / iteration structures (5) Correct output (5) 	/20
В	Bonus	/10
Total:		/100

Markers Signature:_

I declare that I am eligible to write this summative assessment according to the rules and regulations of the Academy of Computer Science & Software Engineering, the Faculty of Science and the University of Johannesburg. I declare that the work submitted is my own and that I have verified the correctness of my electronic submissions.

I UNDERSTAND THAT NON-COMPILING CODE CANNOT BE AWARDED A PASSING MARK

Student Signature:_

.

EQUATION HUNTER

The Utopian Department of Education has approached you to create an educational game as a turn based, text console application in C++:

				43						
					45					
		42								
	47		40							
49										
	<i>6 * 7 = ?</i>									

Player (Black Circle) Empty squares (open space) Possible answers (number)

In the game you will need to move a player controlled character around a two dimensional playing area. The player will need to collect the correct answer from a set of possible answers to a randomly generated simple arithmetic equation. Only one of the answers is correct. Your logic must be placed in the MathSpace namespace.

Initialisation:

- The size of the playing area is given as a command line argument.
- The player is placed in row 1 of a random column
- A random question is generated made up of two random numbers between 1 and 10 (inclusive) which either multiplied, divided, added or subtracted together.
- The correct answer and a random number of incorrect answers are placed randomly on the map on any row after row 2. All answers are rounded off to the nearest integer.
- All remaining cells contain empty space.

Moving:

- The player may move north (up), south (down), east (right), or west (left). The player may not move outside of the game area.
- If the player moves on top a cell containing an incorrect answer the equation is replaced and new answers are placed in the playing area.

End-game:

• The game ends when the player moves over the correct answer.

Using your knowledge of good software engineering principles and C++ you must design and implement such a simulation as follows. Consider the competencies as laid out in the mark sheet.

- C0 Create a program design. Your UML must model the generation of the equation and placement of answers.
- C1 Use your knowledge of basic C++ program structure and make sure to utilise the appropriate system libraries.
- C2 Your program must be readable by human beings in addition to compiler software.
- C3 Demonstrate your knowledge of the divide and conquer principle using functions.
- C4 Your program must make use of programmer defined source code libraries.
- C5 Create a menu system which will ask the user which action they wish to take.
- C6 The user must provide the number of rows and columns used by the simulation (range checked based on terminal width).
- C7 Provide assertion based error handling as well as conventional error handling.
- C8 Random numbers are used when initialising the 2D arrays.
- C9 Use dynamic 2D arrays to implement your simulation. The main array may be output to screen using printable ASCII characters.
- C10 Pay careful attention to checking the legality of moves.
- Bonus Make use of C++11/14 features, structures, and/or enumerations in your code.