
FACULTY OF SCIENCE

ACADEMY OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING

MODULE CSC1A10
Introduction to algorithm development (C++)

 CAMPUS APK

EXAMINATION
 PAPER B

DATE: 2016-05-28

ASSESSOR(S) DR DA COULTER

INTERNAL MODERATOR MR A MAGANLAL

DURATION 3 HOURS MARKS 100

SURNAME, INITIALS (or ID NUMBER):__

STUDENT NUMBER: __

COMPUTER NR: __

CONTACT NR: __

NUMBER OF PAGES: 3 PAGES

REQUIREMENTS: NON-PROGRAMMABLE CALCULATORS ARE PERMITTED

Marker: Submission overseen by:

Sort Rank Result Moderation Correction Submission

CD:

USB:

EVE:

COMPUTER SCIENCE 1A CSC1A10 - 2 -

Mark sheet

Surname:

Initials:

Computer:

Competency Description Result

C0 Program Design /10

C1 Boiler plate code
 Standard namespace (1)
 System library inclusion (3)
 Indication of successful termination of program (1)

/5

C2 Coding style
 Naming of variables (1)
 Indentation (1)
 Use of comments (1)
 Use of named constants (1)
 Program compiles without issuing warnings (1)

/5

C3 Functional Abstraction
 Task decomposition (5)
 Reduction of repetitive code (5)

/10

C4 Separate Compilation
 Header file (1)
 Guard conditions (2)
 Inclusion of header file (1)
 Appropriate content in header file (1)
 Use of programmer defined namespace (5)

/10

C5 User Interaction
 Menu System (5)
 Appropriate use of input, output and error streams (5)

/10

C6 Command Line Argument Handling:
 Appropriately overloaded main function (1)
 Handling incorrect argument counts (1)
 Use of supplied arguments (3)

/5

C7 Error Handling
 Use of assertions (2)
 Use of conventional error handling techniques (3)

/5

C8 Pseudo-random number generation (5) /5

C9 Dynamically allocated two dimensional array handling
 Allocation (5)
 Initialisation (5)
 Deallocation (5)

/15

C10 Algorithm implementation
 Logical Correctness (5)
 Effectiveness / Efficiency of approach (5)
 Correct use of appropriate selection / iteration structures (5)
 Correct output (5)

/20

B Bonus /10

Total: /100

Markers Signature:__

I declare that I am eligible to write this summative assessment according to the rules and regulations of the Academy of
Computer Science & Software Engineering, the Faculty of Science and the University of Johannesburg. I declare that the work
submitted is my own and that I have verified the correctness of my electronic submissions.

I UNDERSTAND THAT NON-COMPILING CODE CANNOT BE AWARDED A PASSING MARK

Student Signature:___

.

COMPUTER SCIENCE 1A CSC1A10 - 3 -

EQUATION HUNTER
The Utopian Department of Education has approached you to create an educational game as a turn
based, text console application in C++:

6 * 7 = ?

Player (Black Circle) Empty squares (open space) Possible answers (number)
In the game you will need to move a player controlled character around a two dimensional playing
area. The player will need to collect the correct answer from a set of possible answers to a randomly
generated simple arithmetic equation. Only one of the answers is correct. Your logic must be placed in
the MathSpace namespace.
Initialisation:

 The size of the playing area is given as a command line argument.
 The player is placed in row 1 of a random column
 A random question is generated made up of two random numbers between 1 and 10

(inclusive) which either multiplied, divided, added or subtracted together.
 The correct answer and a random number of incorrect answers are placed randomly on the

map on any row after row 2. All answers are rounded off to the nearest integer.
 All remaining cells contain empty space.

Moving:
 The player may move north (up), south (down), east (right), or west (left). The player may not

move outside of the game area.
 If the player moves on top a cell containing an incorrect answer the equation is replaced and

new answers are placed in the playing area.
End-game:

 The game ends when the player moves over the correct answer.

Using your knowledge of good software engineering principles and C++ you must design and
implement such a simulation as follows. Consider the competencies as laid out in the mark sheet.

 C0 – Create a program design. Your UML must model the generation of the equation and
placement of answers.

 C1 – Use your knowledge of basic C++ program structure and make sure to utilise the
appropriate system libraries.

 C2 – Your program must be readable by human beings in addition to compiler software.
 C3 – Demonstrate your knowledge of the divide and conquer principle using functions.
 C4 – Your program must make use of programmer defined source code libraries.
 C5 – Create a menu system which will ask the user which action they wish to take.
 C6 – The user must provide the number of rows and columns used by the simulation (range

checked based on terminal width).
 C7 – Provide assertion based error handling as well as conventional error handling.
 C8 – Random numbers are used when initialising the 2D arrays.
 C9 – Use dynamic 2D arrays to implement your simulation. The main array may be output to

screen using printable ASCII characters.
 C10 – Pay careful attention to checking the legality of moves.

 Bonus – Make use of C++11/14 features, structures, and/or enumerations in your code.

.

	
	FACULTY OF SCIENCE

