J	Stell Ste
	UNIVERSITY
	JOHANNESBURG

SM	
EM	
FM	

FACULTY OF SCIENCE

DEPARTMENT COMPUTER SYS CHEMICAL, INDU	OF APPLIED PHYSICS AND ENGINEERING MATHEMATICS NATIONAL DIPLOMA IN ENGINEERING: STEMS, ELECTRICAL, MECHANICAL, MINERALS SURVEYING, STRIAL, MINING, METALLURGY, EXTRACTION METALLURGY, APPLIED BUILDING SCIENCE.	
MODULE:	MAT1AW1/MAT1YBU ENGINEERING MATHEMATICS 1	
CAMPUS:	DFC	
	JULY EXAMINATION	
DATE: 25-JULY-2016	SESSION: 11:30-14:30)
ASSESSORS:	MR T PAEPAE MR MP SELOANE	Ξ
INTERNAL MODERATO	R: MR EZ MORAPEL	.I
DURATION: 3 HOUR	S MARKS: 100	

SURNAME AND INITIALS:

STUDENT NUMBER:

NUMBER OF PAGES: 16

LECTURER	COURSE	MARK (X)
	MINING ENGINEERING	
	MINERALS SURVEY	
MR EZ MORAPELI	INDUSTRIAL ENGINEERING	
MR T PAEPAE	ELECTRICAL ENGINEERING	
	MECHANICAL ENGINEERING	
	EXTRACTION/ENGINEERING	
WIR WIP SELOANE	METALLURGY	
	CHEMICAL ENGINEERING	
DR S SIMELANE	APPLIED BUILDING SCIENCE	

REQUIREMENTS : NON-PROGRAMMABLE SCIENTIFIC CALCULATOR

INSTRUCTIONS :

:

ANSWER ALL THE QUESTIONS IN SPACES PROVIDED. USE A PEN (BLUE OR BLACK INK) FOR WRITING AND DRAWING. USE THE BLANK PAGES FOR ROUGH WORK.

SECTION A

INSTRUCTIONS

USE THE TABLE ON PAGE 2 TO <u>MARK THE LETTER</u> (X) CORRESPONDING TO THE CORRECT ANSWER. DO YOUR ROUGH WORK ON THE BLANK PAGES

1. The graph of the inverse of $y = 4e^{-2x}$ is represented by:

2. The fifth term of the binomial expansion $\frac{1}{\sqrt{4-x}}$ is:

- A $\frac{35}{65536}x^4$ B $-\frac{35}{65536}x^4$ C $-\frac{5}{2048}x^4$ D $\frac{5}{2480}x^3$
- 3. The graph of $f(x) = (x 3)^2 1$ has an axis of symmetry at:
 - A
 y = 3 B
 y = -3

 C
 x = 3 D
 x = -1

4. If
$$\begin{vmatrix} \cot^{-1}\sqrt{8} & 7 \\ 0 & \csc^{3} 1.32 \end{vmatrix} = 2^{x}$$
, then x is equal to:
A 1.42 B -1.42
C 0.37 D 0.42

5. If $\ln(4 - x)^2 - e = 0$, then *x* is equal to:

- A 0.11 B 2.64
- C 7.89 D 0.11 & 7.89

6.	The v	alue of $\lim_{x\to\infty} \frac{e^{2x}}{e^{2x}+1}$ is equal to:			
	А	0	В	∞	
	С	1	D	undefined	

7. The gradient of the normal to the curve $y = 2 \cot 2x$ is:

A $0.25 \cos^2(2x)$ B $0.25 \cos^2(x)$ C $0.25 \sin^2(x)$ D $0.25 \sin^2(2x)$

8. Consider the wave equation $y = \sqrt{2} \sin \pi (5t + \sqrt{5})$, the phase angle is equal to:

A	7.02	В	1.41
С	15.71	D	0.14

9. The complex number $\frac{-2j}{2j+4}$ can be written as:

- A 0.2 + 0.4j B -0.2 0.4j
- C 0.2 0.4j D -0.2 + 0.4j

10. ∫	<i>х</i> ² со	$\frac{54x + 5\cos^2}{5+x^2}$	$\frac{4x}{d}dx$ is equal to:
	4	$0.25\cos 4x$	+ <i>C</i>

C 0.25 sin 4x + C

D $-0.25 \sin 4x + C$

 $0.25 \tan 4x + C$

В

[20]

1.	Α	В	С	D	6.	Α	В	С	D
2.	A	В	С	D	7.	A	В	С	D
3.	Α	В	С	D	8.	А	В	С	D
4.	Α	В	С	D	9.	Α	В	С	D
5.	Α	В	С	D	10.	Α	В	С	D

SECTION B

INSTRUCTIONS

GIVE ONLY THE FINAL SIMPLIFIED ANSWER (CORRECT TO TWO DECIMAL PLACES WHERE APPLICABLE) IN THE SPACE PROVIDED. DO YOUR ROUGH WORK ON THE BLANK PAGES. <u>USE A PEN</u>

- 11. Use the Binomial Theorem to expand the following to its **first three simplified** terms: $\frac{3}{\sqrt{x-\frac{1}{x}}}$ (3)
- 12. Make neat sketch graphs of the following. Show all intercepts with axes, if any.
 - 12.1 $10 = 4x^2 5y^2$

(2)

12.2 $3x^2 = 27 - 9y^2$

(2)

12.3 $y = -3^{1-3x}$

13. From the graph of $x = R \sin(\omega t \pm \alpha)$ below, find the:

(2)

14. Solve for *x* in each case: 14.1 $e^x - e^{-x} = e^{-x}$ 14.2 $\csc x - 2 \sec x = 0$; $x \in [0; 2\pi]$ 15. Find the following in their simplest forms: 15.1 f'(x) if $f(x) = \frac{e^{2ln\sqrt{x}}}{ax^2+b}$ 15.2 f''(x) if $f(x) = \sin^2 2x$ 16. Evaluate the following: $\int \frac{dx}{2\sqrt{2x^3}}$ 16.1 16.2 $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$

(2)

(2)

(2)

(2)

(2)

(2)

[26]

SECTION C

INSTRUCTIONS

SHOW ALL THE IMPORTANT STEPS TAKEN AND GIVE YOUR FINAL ANSWERS CORRECT TO TWO DECIMAL PLACES WHERE APPLICABLE. <u>USE A PEN</u>. USE PAGE 17 TO RE-DO ANY QUESTION YOU MAY HAVE CANCELLED.

17. Use Cramer's rule to solve for z only:

$$y = -2x$$

$$4x + z - 6 = 0 = z - 4y$$

(5)

18. Solve for *x*

18.1 √ 3	$\frac{3}{3}\sin(1.3+x) + 1.3 = 0$	$0 \le x \le 2\pi$	(3)
---------------------	------------------------------------	--------------------	-----

18.2 $3^{-x} \cdot e^{2x+1} = 3$

(3)

19. Make *x* the subject of the formula:

$$T = \frac{z^4 \sin^{-1}(x-\theta)}{k} \tag{3}$$

20. The diagram below shows a sector of a circle, centre *O*. The point *P* lies on *OA*, the point *Q* lies on *OB* and *PQ* is perpendicular to *OB*. The length of *OP* is 9 cm and $\angle AOB = \frac{\pi}{6}rad$. Given that OP : OA = 3 : 5

20.1 Show that PA = 6 cm

(1)

20.2 Calculate the perimeter of the shaded region (5)

20.3 Calculate the area of the shaded region

(4)

21. Use De Moivre's theorem to evaluate:

$$\left[\frac{3.1(\cos 125^{\circ} - j \sin 125^{\circ})}{2.4(\cos 0.61 + j \sin 0.61)}\right]^{3}$$
 (Answer in exponential form). (5)

22. Determine **the roots** of the equation $z^2 - 2 + j\sqrt{2} = 0$ and express your answers in rectangular form. (4)

23. Find the following in their simplest forms:

23.1
$$f'(x)$$
 if $f(x) = \frac{1 - \sec x}{\tan x}$ (3)

23.2
$$f'(x)$$
 if $f(x) = e^{\sqrt{1-x^2}}$

(3)

24. An architect wants to design a window in the shape of a rectangle capped by a semicircle as shown in the figure below.

If the perimeter of the window is constrained to be 24 cm, what dimensions should the architect choose for the window to admit the greatest amount of light? **Hint:** maximum amount of light will be admitted when the area of the window is at its maximum. (5)

25. Determine the following integrals:

25.1
$$\int (x + \sqrt[3]{x})^{-1} dx$$

25.2 $\int_0^1 \frac{x}{x+1} dx$

(3)

(4)

26. A particle moves in a straight line from origin (at t = 0) with known velocity v(0) = 2.5 m/s and acceleration (a) = $30 m/s^2$. Calculate the displacement this particle undergoes between 2 and 5 seconds. (5)

TOTAL MARKS = 100AVAILABLE MARKS: 103USE THIS SPACE TO RE-DO ANY QUESTION YOU MAY HAVE CANCELLED

