

Dr SM SIMELANE

Dr PG DLAMINI

MARKS 80

FACULTY OF SCIENCE

DEPARTMENT OF APPLIED PHYSICS AND ENGINEERING MATHEMATICS NATIONAL DIPLOMA IN ANALYTICAL CHEMISTRY

MODULE MAT1AE1

CAMPUS DFC

SUPPLEMENTARY EXAMINATION

DATE JULY 2016

ASSESSORS

INTERNAL MODERATOR

DURATION 2 HOURS

STUDENT NUMBER:

COURSE:

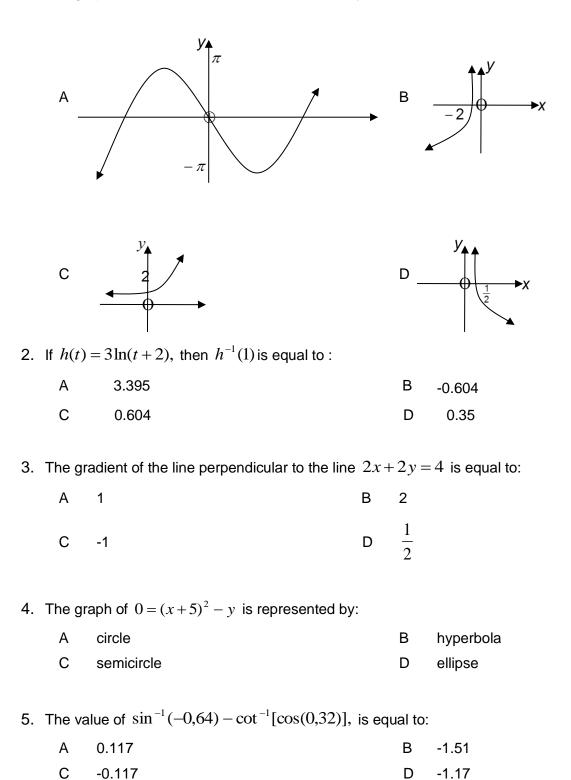
LECTURER:

CONTACT NO:

NUMBER OF PAGES: 12

INSTRUCTIONS : ANSWER ALL THE QUESTIONS

REQUIREMENTS : INFORMATION BOOKLET


: NON-PROGRAMMEBLE SCIENTIFIC CALCULATOR

SECTION A [20]

INSTRUCTIONS

USE THE TABLE ON PAGE 3 TO <u>MARK THE LETTER</u> (X) CORRESPONDING TO THE CORRECT ANSWER. DO YOUR ROUGH WORK ON THE BLANK PAGES.

1. The graph of $y = 2(\cos 2\pi)2^x$ is represented by:

6. If $g(x) = x^2 + 1$ and $h(x) = e^x$ the $(g \circ h)(x)$ is given by

A
$$e^{x^2+1}$$
 B $e^{x^2}+1$
C $e^{2x}+1$ D e^{2x+1}

7. The third term in the Binomial expansion of $\frac{-1}{\sqrt{x-\frac{3}{y^2}}}$ is equal to

A
$$\frac{9}{8y^4\sqrt{x^3}}$$
 B $\frac{-9}{8y^4\sqrt{x^3}}$
C $\frac{27}{8y^4\sqrt{x^5}}$ D $\frac{-27}{8y^4\sqrt{x^5}}$

8. The function $y = 0.5 \sin \pi (3x + 4)$, has period

9. Given that $\log_4(x+3)^2 = e$, then x is equal to:

A
$$3+\sqrt{4^e}$$
B $-3\pm\sqrt{4^e}$ C $-3-\sqrt{4^e}$ D $-3+\sqrt{4^e}$

10. The gradient of the line parallel to the line given by $v(t) = 2t + \pi$ is

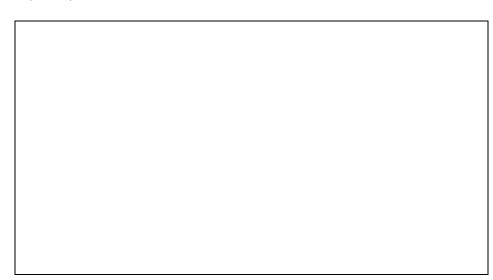
A
$$2t$$
B
 $2+\pi$

C
2
D
 $t+\pi$

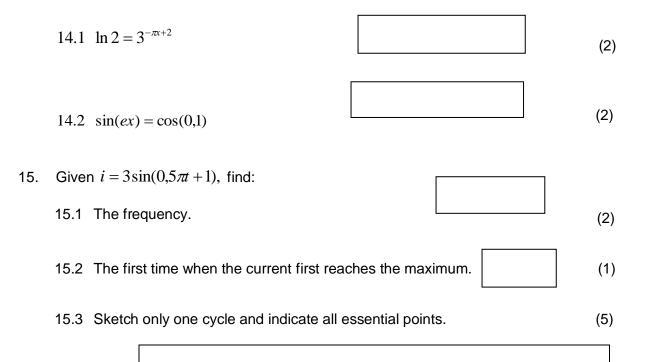
1.	Α	В	С	D	6.	Α	В	С	D
2.	A	В	С	D	7.	A	В	С	D
3.	Α	В	С	D	8.	Α	В	С	D
4.	Α	В	С	D	9.	Α	В	С	D
5.	А	В	С	D	10.	А	В	С	D

SECTION B [29]

INSTRUCTIONS


GIVE ONLY THE FINAL SIMPLIFIED ANSWER (CORRECT TO TWO DECIMAL PLACES WHERE APPLICABLE) IN THE SPACE PROVIDED. DO YOUR ROUGH WORK ON THE BLANK PAGES.

11. Expand $(2x + y)^{-5}$ to the first **four** simplified terms using the Binomial Theorem. Also indicate the conditions for validity. (4)


13. Make neat sketch graph of each of the following indicating clearly the turning point, the x and y intercepts

$$13.1 \quad f(y) = -y^2 + 3y + 4$$

13.2
$$y = -\sqrt{9 - x^2}$$
 (4)

14. Solve for x in each case:

16. Factorize $m^4 - 5m^2$

[29]

SECTION C [34]

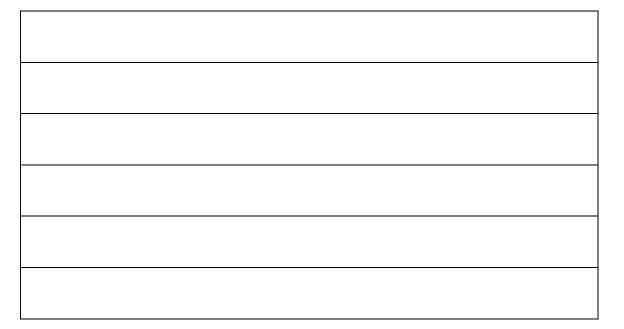
INSTRUCTIONS

SHOW ALL THE STEPS TAKEN AND GIVE YOUR FINAL ANSWERS CORRECT TO TWO DECIMAL PLACES WHERE APPLICABLE. USE PAGES 19 TO RE-DO ANY QUESTION YOU MAY HAVE CANCELLED.

17. The equation for the currents i_1 , i_2 and i_3 in the electric current is given by

 $2i_{1} - 3i_{2} = 4 - i_{3}$ $4i_{1} + i_{2} + 3 = 0$ $3i_{2} + i_{3} + 1 = 0$ Use Cramer's rule to solve for *i* only

(5)


	Use channels fulle to solve for l_2 only.	(5)
١		

MAT1AE1

18. Solve for x

18.1
$$\frac{3 \cdot 2^{2x-1} - 2^{2x+1}}{4^x} = 2^{-2x} - 1$$
(4)

18.2 $a = \cot^{-1}(e^{\cos 2x})$

19. The **area of a sector** is $2.88m^2$ and its **arc length** is 3.33m. Determine its radius and the angle subtended at the centre of the circle. (5)

20. Solve the trigonometric equation $\cos^2 \theta - \sin 2\theta = 0, \ 0 \le \theta \le \pi$

21. Make θ the subject of the formula: $\sec e^{a \tan \theta} = \ln x$

22. Decompose into partial fractions:

$$\frac{x^4 - 2x^3 - 7x^2 + 5x - 24}{x^2 - 2x - 8}$$

[24]
[34]

RE-DO ANY QUESTION THAT YOU MAY HAVE CANCELLED:

TOTAL MARKS :80 AVAILABLE MARKS: 83