

FACULTY OF SCIENCE

DEPARTMENT OF APPLIED PHYSICS AND ENGINEERING MATHEMATICS

BACCALAUREUS OPTOMETRIAE:

MODULE MAT01A1

CALCULUS OF ONE-VARIABLE FUNCTIONS

CAMPUS DFC

JUNE EXAMINATION

DATE 31/05/2016	SESSION 12:30 – 14:30
ASSESSOR	MR IK LETLHAGE
INTERNAL MODERATOR	MR J BRUYNS
DURATION 2 HOURS	MARKS 70
SURNAME AND INITIALS:	
STUDENT NUMBER:	
COURSE:	
CONTACT NO:	

NUMBER OF PAGES: 15

INSTRUCTIONS

- ANSWER ALL THE QUESTIONS IN THE SPACE PROVIDED
 USE ONLY A PEN FOR WRITING AND DRAWING (BLACK OR BLUE INK).
 USE THE BLANK PAGES FOR ROUGH WORK. INDICATE IT AS SUCH.
- 4. SHOULD YOU NEED MORE SPACE FOR WRITING, USE THE BLANK PAGES.

QUESTION 1 [3]

Solve for x and represent the solution on a number line: $|2x-3| \ge 3$ (3)

QUESTION 2 [3]

Use a truth table to establish the logical equivalence $\neg(p \leftrightarrow q) \equiv (p \land \neg q) \lor (q \land \neg p)$

QUESTION 3 [3]

- (a) Translate the following statement into predicate (first-order) language: "For every real number x, there exists a real number y such that xy = 1." (1)
- (b) Determine the truth value of A, given the following: (2)

 $B \rightarrow \neg A$ is true, $\neg B \rightarrow \neg C$ is true and C is true.

QUESTION 4 [3]

Calculate the value of the limit $\lim_{n\to\infty} \sum_{i=1}^{n} \frac{1}{n} \left(\frac{i+1}{n}\right)^3$ (3)

QUESTION 5 [8]

(a) Use De Moivre's Theorem to calculate $\frac{\left(1-\sqrt{3}i\right)^3\left(-1+i\right)^4}{\left(2\sqrt{3}+2i\right)^2}$. Give the final answer in polar form. (4)

(b) Find all the cube roots of -27 and express the final answers in the form a+bi. (4)

QUESTION 6 [3]

Use the direct proof method to prove that $n^2 - n$ is even $\forall n \in \square$.

QUESTION 7 [2]

Sketch the graph of $y = 2\cos\left(x - \frac{\pi}{2}\right)$ on the interval $\left[-2\pi, 2\pi\right]$. Clearly show all the intercepts and asymptotes, if any.

QUESTION 8 [3]

Let $f(x) = \log_2(x-3) + 2$ Find the inverse of f: f^{-1}

QUESTION 9[6]

Consider the function $f(x) = \frac{x^2 - 4}{|x - 2|}$.

(a) Find
$$\lim_{x \to 2^+} f(x)$$
 (2)

(b) Find
$$\lim_{x \to 2^-} f(x)$$
 (2)

(c) Is
$$f$$
 continuous at $x = 2$? Explain your answer. (2)

QUESTION 10[3]

Use the Intermediate Value Theorem to show that the equation $x^3 - x - 1 = 0$ has a root in the interval (1,2). (**DO NOT** attempt to find this root.)

QUESTION 11[5]

Consider the function $f(x) = \frac{2}{\sqrt{x+2}}$.

(a) Use the definition of the derivative of a function to find f'(2). (3)

(b) Find the equation of the line through the point (-1;2) that is perpendicular to the tangent line to the curve y = f(x) at (2;1)

QUESTION 12[3]

Prove that $\sinh^{-1} x = \ln\left(x + \sqrt{x^2 + 1}\right)$

QUESTION 13[11]

(a) Find
$$\frac{d^2y}{dx^2}$$
 if $y = x^2 \tanh^{-1} x$. (4)

(b) Find
$$\frac{dy}{dx}$$
, in its simplest form, if $y = \frac{\left(\cos^{-1} x\right)^x \cdot \sqrt[5]{x^3 + 7}}{e^{\sqrt{x+1}}}$. (4)

(c) Use implicit differentiation to find
$$\frac{dy}{dx}$$
, given that $xy = \ln(x+y)$ (3)

QUESTION 14[3]

Use l'Hôspital's Rule to calculate $\lim_{x\to 0} (\cot x - \csc x)$

QUESTION 15[4]

Find f if $f''(x) = 10\sin x + 3\cos x$, f(0) = 0, $f(2\pi) = 12$.

QUESTION 16 [9]

Evaluate the following integrals. Show all the integration steps.

(a)
$$\int_{1}^{3} \left(e^{\ln x} + \frac{5}{\sqrt{x}} - \frac{13}{x} \right) dx$$
 (3)

(b)
$$\int \cos^3 x dx$$
 (3)

(c)
$$\int \frac{\sec^2 \theta}{\sqrt{\tan^2 \theta - 1}} d\theta$$