FACULTY OF SCIENCE

SURNAME AND INITIALS: \qquad

STUDENT NUMBER:

CONTACT NO:

NUMBER OF PAGES: 16
INSTRUCTIONS

1. ANSWER ALL THE QUESTIONS IN THE SPACE PROVIDED
2. USE ONLY A PEN FOR WRITING AND DRAWING (BLACK OR BLUE INK).
3. USE THE BLANK PAGES FOR ROUGH WORK. INDICATE IT AS SUCH.
4. SHOULD YOU NEED MORE SPACE FOR WRITING, USE THE BLANK PAGES.

QUESTION 1 [4]

Solve for x and represent the solution in interval form: $(x-1)(x+3)(2 x+4)<0$

QUESTION 2 [3]

Solve the equation $3 \sin \theta=2 \cos ^{2} \theta, 0 \leq \theta \leq \pi$.

QUESTION 3 [3]

Evaluate the sum of the telescoping sum $\sum_{k=0}^{99}\left(\frac{1}{4^{k}}-\frac{1}{4^{k+1}}\right)$.

QUESTION 4 [5]

Find all the fourth roots of $-8 \sqrt{3}+8 i$. Express the roots in the form $a+b i$.

QUESTION 5 [4]

Use The Principle of Mathematical Induction to prove that

$$
\sum_{i=1}^{n} \frac{1}{(2 i-1)(2 i+1)}=\frac{n}{2 n+1} \quad \forall n \in \square .
$$

QUESTION 6 [2]

Use a truth table to show that $\neg(p \rightarrow q) \rightarrow p \wedge q$ is logically equivalent to $p \rightarrow q$

QUESTION 7[5]

In the table below, column A contains logical statements and column B contains the meanings of these statements. Match each statement in column A to its meaning in column B.

Column A	
(i) \quad Column B	
(ii) $\quad p \vee \neg p$	(a) Tautology
(iii) $\quad q \rightarrow p$	(b) Logical equivalence of $\neg p \vee q$
(iv) $\quad p \wedge \neg p$	(c) A contradiction
(v) $p \rightarrow q$	(d) The converse of $p \rightarrow q$

Answers

	Answer
(i)	
(ii)	
(iii)	
(iv)	
(v)	

QUESTION 8 [1]

Use predicate (first order) language to negate the following statement.
All real numbers are integers. (Use Π to denote the set of all real numbers and Π to denote the set of all integers.)

QUESTION 9 [3]

Let $f(x)=\frac{1}{\sqrt{x^{3}-1}}$. The graph of this function is as below.

Find the inverse of $f: f^{-1}$ and use the given graph to sketch the graph of f^{-1} on the same set of axes.

QUESTION 10[4]

(a) State the Squeeze Theorem.
(b) Use the Squeeze Theorem to find $\lim _{x \rightarrow 0}\left(x^{4} \cos \frac{2}{x}\right)$.

QUESTION 11[6]

(a) Use the definition of the derivative of a function to find $f^{\prime}(x)$ if $f(x)=\frac{1}{x}$.
(b) Find the equation of a line that is parallel to the tangent line to curve $y=\frac{1}{x}$ at $(1 ; 1)$ that passes through the point $(0 ; 1)$.

QUESTION 12[5]

Use the result $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$ to prove the following results.
(a) $\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta}=0$
(b) $\frac{d}{d x}(\sin x)=\cos x$, using the definition of the derivative of a function.

QUESTION 13[10]

(a) Find $\frac{d y}{d x}$ if $y=\frac{2 x-e^{\sqrt{x}}}{1+\tan x}$
(b) Find $\frac{d y}{d x}$, in its simplest form, if $y=\frac{x \tan ^{-1} x}{e^{x^{2}} \sin x}$.
(c) Let $x^{2}+y^{2}+2 x y=1$. Use implicit differentiation to find $\frac{d y}{d x}$.

QUESTION 14[3]

Use l'Hôspital's Rule to calculate $\lim _{x \rightarrow 0^{+}}(\sin x \ln x)$

QUESTION 15[3]

Find f if $f^{\prime}(x)=5 x^{4}-3 x^{2}+4, f(-1)=2$.

QUESTION 16 [2]

Use the Fundamental Theorem of Calculus, Part 1, to evaluate $\frac{d}{d x} \int_{0}^{\tan x} \tan ^{-1} t d t$

QUESTION 17[9]

Evaluate the following integrals. Show all the integration steps.
(a) $\int \sinh (\ln x) d x$
(b) $\int_{0}^{\pi} \tan ^{4} x d x$
(4)
(c) $\int \frac{2 x}{x^{2}+1} d \theta$
(2)

