

FACULTY OF SCIENCE

DEPARTMENT OF APPLIED PHYSICS AND ENGINEERING MATHEMATICS

BACCALAUREUS OPTOMETRIAE:

MODULE MAT01A1

CALCULUS OF ONE-VARIABLE FUNCTIONS

CAMPUS DFC

JULY SUPPLEMENTARY EXAMINATION

DATE 29/07/2016	SESSION 08:00 - 10):00
ASSESSOR	MR IK LETLHA	AGE
INTERNAL MODERATOR	MR J BRUYNS	S
DURATION 2 HOURS	MARKS	70
SURNAME AND INITIALS:		
STUDENT NUMBER:		
CONTACT NO:		

NUMBER OF PAGES: 16

INSTRUCTIONS

- 1. ANSWER ALL THE QUESTIONS IN THE SPACE PROVIDED
- 2. USE ONLY A PEN FOR WRITING AND DRAWING (BLACK OR BLUE INK).
- 3. USE THE BLANK PAGES FOR ROUGH WORK. INDICATE IT AS SUCH.
- 4. SHOULD YOU NEED MORE SPACE FOR WRITING, USE THE BLANK PAGES.

QUESTION 1 [4]

Solve for x and represent the solution in interval form: (x-1)(x+3)(2x+4) < 0

QUESTION 2 [3]

Solve the equation $3\sin\theta = 2\cos^2\theta$, $0 \le \theta \le \pi$.

QUESTION 3 [3]

Evaluate the sum of the telescoping sum $\sum_{k=0}^{99} \left(\frac{1}{4^k} - \frac{1}{4^{k+1}} \right)$.

QUESTION 4 [5]

Find all the fourth roots of $-8\sqrt{3} + 8i$. Express the roots in the form a + bi.

QUESTION 5 [4]

Use The Principle of Mathematical Induction to prove that

$$\sum_{i=1}^{n} \frac{1}{(2i-1)(2i+1)} = \frac{n}{2n+1} \quad \forall n \in \square.$$

QUESTION 6 [2]

Use a truth table to show that $\neg(p \rightarrow q) \rightarrow p \land q$ is logically equivalent to $p \rightarrow q$

QUESTION 7[5]

In the table below, column A contains logical statements and column B contains the meanings of these statements. Match each statement in column A to its meaning in column B.

Column A	Column B
(i) $(p \land \neg q) \lor (q \land \neg p)$	(a) Tautology
(ii) <i>p</i> ∨¬ <i>p</i>	(b) Logical equivalence of $\neg p \lor q$
(iii) $q \rightarrow p$	(c) A contradiction
(iv) $p \land \neg p$	(d) The converse of $p \rightarrow q$
$(V) \qquad p \to q$	(e) Logical equivalence of $\neg(p \leftrightarrow q)$

Answers

	Answer
(i)	
(ii)	
(iii)	
(iv)	
(v)	

QUESTION 8 [1]

Use predicate (first order) language to n	negate the following statement.
All real numbers are integers. (Use $\ \Box$ to	o denote the set of all real numbers and $\ \Box$ to
denote the set of all integers.)	

QUESTION 9 [3]

Let $f(x) = \frac{1}{\sqrt{x^3 - 1}}$. The graph of this function is as below.

Find the inverse of f: f^{-1} and use the given graph to sketch the graph of f^{-1} on the same set of axes.

QUESTION 10[4]

(a) State the **Squeeze Theorem**. (1)

(b) Use the Squeeze Theorem to find
$$\lim_{x\to 0} \left(x^4 \cos \frac{2}{x} \right)$$
. (3)

QUESTION 11[6]

(a) Use the definition of the derivative of a function to find f'(x) if $f(x) = \frac{1}{x}$.

(3)

(b) Find the equation of a line that is parallel to the tangent line to curve $y = \frac{1}{x}$ at (1;1)

that passes through the point (0;1).

(3)

QUESTION 12[5]

Use the result $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$ to prove the following results.

(a)
$$\lim_{\theta \to 0} \frac{\cos \theta - 1}{\theta} = 0$$
 (2)

(b)
$$\frac{d}{dx}(\sin x) = \cos x$$
, using the definition of the derivative of a function. (3)

QUESTION 13[10]

(a) Find
$$\frac{dy}{dx}$$
 if $y = \frac{2x - e^{\sqrt{x}}}{1 + \tan x}$ (3)

(b) Find
$$\frac{dy}{dx}$$
, in its simplest form, if $y = \frac{x \tan^{-1} x}{e^{x^2} \sin x}$. (4)

(c) Let $x^2 + y^2 + 2xy = 1$. Use implicit differentiation to find $\frac{dy}{dx}$. (3)

QUESTION 14[3]

Use l'Hôspital's Rule to calculate $\lim_{x\to 0^+} (\sin x \ln x)$

QUESTION 15[3]

Find f if $f'(x) = 5x^4 - 3x^2 + 4$, f(-1) = 2.

QUESTION 16 [2]

Use the Fundamental Theorem of Calculus, Part 1, to evaluate $\frac{d}{dx} \int_0^{\tan x} \tan^{-1} t dt$

QUESTION 17[9]

Evaluate the following integrals. Show all the integration steps.

(a)
$$\int \sinh(\ln x) dx$$
 (3)

(b)
$$\int_{0}^{\pi} \tan^4 x dx$$
 (4)

(c)
$$\int \frac{2x}{x^2 + 1} d\theta$$

: 72