FACULTY OF SCIENCE

DEPARTMENT OF APPLIED PHYSICS AND ENGINEERING MATHEMATICS
B.TECH: EMERGENCY MEDICAL CARE AND PODIATRY

MODULE: Emergency (PHB1AA1) AND Podiatry (PHY1ALT) COURSE: PHYSICS 1
CAMPUS: DFC

JULY EXAMINATION 2016

DATE 27/07/2016
ASSESSOR
INTERNAL MODERATOR
DURATION 2 HOURS

NUMBER OF PAGES:
8 PAGES INCLUDING DATA SHEET
INSTRUCTIONS: Answer all the questions in full and SHOW your workings Calculators are permitted
Answer SECTION A in the answer book provided
Answer SECTION B on UJ multiple choice grid provided
Write your surname and initials on the multiple choice grid

SECTION A - answer in full

QUESTION 1[14]

Define or state

> 1.1 a vector and give an example
1.2 the equilibrant
1.3 Newton's second law of motion
1.4 the law of conservation of momentum
1.5 the Newton
(3)

QUESTION 2 [8]

2.1 An archer pulls back his arrow 30 cm with a force of 200 N. Assume all this work is stored in the bow and string as elastic potential energy. Calculate the speed with which a 30 g arrow will leave the string. Neglect the kinetic energy of the bow and string.
2.2 What power must the motor of an elevator supply to raise
a 60 kg man vertically at a rate of $0,5 \mathrm{~m} \mathrm{~s}^{-1}$?

QUESTION 3 [12]

State or define
3.1. Archimedes principle
3.2 Charles Law in words and write the mathematical
formula
(4)
3.3 pressure
3.4 the Pascal

QUESTION 4 [17]

4.1 A piece of wax displaces $12 \mathrm{~cm}^{3}$ of water when afloat and $16 \mathrm{~cm}^{3}$ when forced under water. It displaces $14 \mathrm{~cm}^{3}$ of oil when floating in oil. Calculate
4.1.1 the RD of wax
(5)
4.1.2 the RD of oil
(5)
4.2 Given an RD bottle, explain with the aid of formulae how you will determine the RD of oil.

SECTION B - multiple choice

1. A vector is in a direction $30^{\circ} \mathrm{W}$ of S . The bearing of the vector is

A 210°
B 240°
C $\quad 60^{\circ}$
D $\quad 30^{\circ}$
2. A driver driving at $56 \mathrm{~km} \mathrm{~h}^{-1}$ starts braking 50 m from a red traffic light and stops at the light. How long did it take to stop the car?

A $\quad 3,57 \mathrm{~s}$
B $\quad 6,43 \mathrm{~s}$
C $\quad 643 \mathrm{~s}$
D $35,7 \mathrm{~s}$
3. The deceleration in question 2 above is

A $\quad 2,4 \mathrm{~m} \mathrm{~s}^{-2}$
B $\quad-2,4 \mathrm{~m} \mathrm{~s}^{-2}$
C $\quad-6,43 \mathrm{~m} \mathrm{~s}^{-2}$
D $\quad 6 \mathrm{~m} \mathrm{~s}^{-2}$
4. A package is dropped from a hot air balloon at a height of 1000 m . How long does it take the package to reach the ground?

A $\quad 14,14 \mathrm{~s}$
B $\quad 447,21 \mathrm{~s}$
C $\quad 140,14 \mathrm{~s}$
D 6 s
5. According to Newton's second law of motion, the acceleration of a body is

A never constant
B directly proportional to the body's mass
C inversely proportional to the mass of the body
D inversely proportional to the size of the force causing it
6. A weight of 50 N travelling at $90 \mathrm{~km} \mathrm{~h}^{-1}$ has a momentum of

A	4500 Ns
B	125 Ns
C	450 Ns
D	1225 Ns

7. The energy required by a 100 W globe to glow for 2 minutes is enough to lift a 3 kg mass vertically to a height of
A. $\quad 60 \mathrm{~m}$
B. $\quad 100 \mathrm{~m}$
C. $\quad 400 \mathrm{~m}$
D. 4000 m
8. How much work is required to change the speed of a 1000 kg car from $5 \mathrm{~m} \mathrm{~s}^{-1}$ to $8 \mathrm{~m} \mathrm{~s}^{-1}$?

A 12500 J
B 32000 J
C 44500 J
D 19500 J
9. What is the total mechanical energy of a 0.25 kg stone moving at $20 \mathrm{~m} \mathrm{~s}^{-1}$ when it is 20 m above the earth's surface? Take $\mathrm{H}_{0}=0$ at the earth's surface

A 50 J
B 500 J
C $\quad 10 \mathrm{~J}$
D 100 J
10. The relative density of a substance is 5 . This means that the

A mass per unit volume of the substance is 5
B density of the substance compared to the density of pure water at $4^{\circ} \mathrm{C}$ is 5
C density of the substance compared to the mass of an equal volume of water is 5
D mass of the substance compared to an equal volume of water is 5
11. A liquid has a relative density of 0,357 . What is its density?

A $\quad 357 \mathrm{~kg} \mathrm{~m}^{-3}$
B $\quad 643 \mathrm{~kg} \mathrm{~m}^{-3}$
C $\quad 0,357 \mathrm{~kg} \mathrm{~m}^{-3}$
D $\quad 3570 \mathrm{~kg} \mathrm{~m}^{-3}$
12. A pressure gauge in a submarine shows a total pressure of 1200 kPa . If atmospheric pressure is 100 kPa at a depth of $98,2 \mathrm{~m}$. Calculate the density of sea water.

A $\quad 1,143 \mathrm{~kg} \mathrm{~m}^{-3}$
B $\quad 1,12 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$
C $\quad 1,12 \mathrm{~kg} \mathrm{~m}^{-3}$
D $\quad 1,143 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$
13. The mass of an RD bottle filled with water is 200 g . When filled with oil, the mass is 170 g and its mass is 50 g when emptyThe RD of oil is

A 800
B 8
C 0,8
D 80
14. Pascal's principle states that

A the pressure in a fluid is independent of the shape or size of the container
B the change in pressure on a confined fluid is transmitted unchanged throughout the fluid
C a force of 1 N acting uniformly and perpendicularly on a $1 \mathrm{~m}^{2}$ area causes a pressure of 1 Pa
D the pressure in a fluid at the same depth is the same in all directions
15. Assume atmospheric pressure to be 100 kPa . The force exerted by air in a room on a window pane measuring 40 cm by 80 cm is

A $\quad 32 \mathrm{kN}$
B $\quad 320 \mathrm{kN}$
C $\quad 312,5 \mathrm{kN}$
D $\quad 31,3 \mathrm{~N}$
16. A gas is confined in a cylinder of constant volume. At $100^{\circ} \mathrm{C}$ the pressure of the gas is 100 kPa . Calculate the temperature (in ${ }^{\circ} \mathrm{C}$) if the pressure is 10 kPa . (4 marks)

A $\quad-235,7^{\circ} \mathrm{C}$
B $\quad 37,3^{\circ} \mathrm{C}$
C $\quad 10 \mathrm{~K}$
D $\quad-263,3^{\circ} \mathrm{C}$
17. Convert 90 kPa to mm Hg

A $675,2 \mathrm{~mm} \mathrm{Hg}$
B $\quad 675000,2 \mathrm{~mm} \mathrm{Hg}$
C $\quad 67,52 \mathrm{~mm} \mathrm{Hg}$
D $\quad 600 \mathrm{~mm} \mathrm{Hg}$
[20 x $2=40]$

Total $=91$
$100 \%=90$

