FACULTY OF SCIENCE
DEPARTMENT OF APPLIED PHYSICS AND ENGINEERING MATHEMATICS
EMERGENCY MEDICAL CARE

MODULE: PHY1DA1
COURSE: PHYSICS 1
CAMPUS: DFC

JULY EXAMINATION 2016

DATE 27/07/2016
ASSESSOR

INTERNAL MODERATOR
DURATION 2 HOURS

SESSION: 08:30-11:30
DR S.P. BVUMBI

MR T.G. MATHE

MARKS 98

NUMBER OF PAGES:
8 PAGES INCLUDING DATA SHEET
INSTRUCTIONS: Answer all the questions
Calculators are permitted
Answer SECTION A in the answer book provided
Answer SECTION B on UJ multiple choice grid provided
Write your surname and initials on the multiple choice grid

SECTION A - answer in full

QUESTION 1 [17]

1.1 Define or state
1.1.1 velocity
1.1.2 Newton's second law of motion
1.1.3 power
1.2 A 1000 kg car is speeding at $90 \mathrm{~km} \mathrm{~h}^{-1}$. Calculate the retarding force of the brakes required to stop it in 100 m on a level road.
(6)
1.3 A motorcycle decelerates uniformly from $30 \mathrm{~m} \mathrm{~s}^{-1}$ to $14 \mathrm{~m} \mathrm{~s}^{-1}$ in 16 s . Calculate the deceleration of the motorcycle.
(3)

QUESTION 2 [18]

2.1 A body, mass 5 kg , initial velocity $10 \mathrm{~m} \mathrm{~s}^{-1}$ is projected up a frictionless inclined plane for 20 m , as shown in the figure below.

Calculate :
2.1.1 the kinetic energy at A
2.1.2 the potential energy at B
2.1.3 the kinetic energy at B
2.1.4 the velocity at B
2.2 What power must a girl expend to raise a $0,5 \mathrm{~kg}$ book vertically at a speed of $0,6 \mathrm{~m} \mathrm{~s}^{-1}$?

QUESTION 3 [9]

State or define

3.1. Pascal's principle

3.2. law of Charles in words AND write the mathematical formula
3.3. the Pascal
(2)

QUESTION 4 [10]

4.1 A solid aluminium cylinder of mass 30 kg and RD 2,7 has a mass of 20 kg in turpentine. Calculate the RD of turpentine.
(6)
4.2 Convert 1000 Pa to cm Hg

SECTION B - multiple choice

1. Of the given quantities time; velocity; displacement and acceleration, the one that does not fit is

A time, because it is the only scalar quantity B acceleration, because it is the only one with direction
C displacement, because it is the only vector quantity
D velocity, because it is the only one with a derived unit
2. The resultant vector is

A that single vector that closes a vector triangle
B that single vector that balances the other vectors
C that single vector that replace all the other vectors
D obtained by adding the sizes of all the vectors
3. When an unbalanced force acts on a body, the body

A will accelerate
B experience a change in velocity
C experience a change in its state of inertia
D all of the above
4. What is the tension in a rope suspending a 20 kg object?

A $\quad 20 \mathrm{~N}$
B $\quad 200 \mathrm{~N}$
C $\quad 0 \mathrm{~N}$
D $\quad 100 \mathrm{~N}$
5. The force per unit area is measured in

A joule
B newton-meter
C pascal
D watt
6. An object start from rest and accelerates at $11 \mathrm{~m} \mathrm{~s}^{-2}$. How long will it take to acquire a velocity of $48,4 \mathrm{~m} \mathrm{~s}^{-1}$?

A $\quad 44 \mathrm{~s}$
B $\quad 14 \mathrm{~s}$
C $\quad 400 \mathrm{~s}$
D $4,4 \mathrm{~s}$
7. A stone is thrown downward from a height of 32 m . If it reaches the ground after 2 s , its initial velocity will be

A $\quad 0,6 \mathrm{~m} \mathrm{~s}^{-1}$
B $\quad 6 \mathrm{~m} \mathrm{~s}^{-1}$
C $\quad 16 \mathrm{~m} \mathrm{~s}^{-1}$
D $\quad 60 \mathrm{~m} \mathrm{~s}^{-1}$
8. One mega joule of work is done to lift a crate 20 m high. What is the mass of the crate?

A $\quad 15000 \mathrm{~kg}$
B $\quad 5000 \mathrm{~kg}$
C $\quad 5 \times 10^{-3} \mathrm{~kg}$
D $\quad 15 \times 10^{-3} \mathrm{~kg}$
9. How much work is required to change the speed of a 1000 kg car from $5 \mathrm{~m} \mathrm{~s}^{-1}$ to $8 \mathrm{~m} \mathrm{~s}^{-1}$?

A 12500 J
B 32000 J
C 44500 J
D 19500 J
10. The relative density of a substance is 5 . This means that the

A mass per unit volume of the substance is 5
B density of the substance compared to the density of pure water at $4^{\circ} \mathrm{C}$ is 5
C density of the substance compared to the mass of an equal volume of water is 5
D mass of the substance compared to an equal volume of water is 5
11. What volume does 400 g mercury of RD 13,6 occupy?

A $\quad 29,4 \mathrm{~cm}^{3}$
B $\quad 0.029 \mathrm{~cm}^{3}$
C $29411,76 \mathrm{~cm}^{3}$
D $\quad 294 \mathrm{~cm}^{3}$
12. The mass of a gold ring ($R D=19,3$) of volume $8 \times 10^{-6} \mathrm{~m}^{3}$ is

A $\quad 154,4 \mathrm{~kg}$
B $\quad 154000 \mathrm{~g}$
C $\quad 2,4 \mathrm{~g}$
D $\quad 154,4 \mathrm{~g}$
13. An empty relative density bottle has a mass of 20 g , filled with water 70 g and filled with spirits 64 g . Calculate the RD of spirits.

A 9
B 0,9
C 90
D 900
14. Isobars are lines on the map joining places of same

A temperature
B volume
C mass
D pressure
15. A block has dimensions $2 \mathrm{~m} \times 5 \mathrm{~m} \times 10 \mathrm{~m}$ and mass 10 kg .

Calculate the pressure exerted by the block if the block lies on its $2 \mathrm{~m} \times 5 \mathrm{~m}$ side

A	$9,8 \mathrm{kPa}$
B	10 Pa
C	10 kPa
D	$9,8 \mathrm{~Pa}$

16. Boyle's law for an enclosed mass of gas is only valid if the

A volume of the gas stays constant
B temperature of the gas remains fixed
C pressure of the gas remains fixed
D gas is at STP
17. Convert a pressure of 70 cm Hg to a pressure in kPa (2 marks)

A $\quad 93,3 \mathrm{kPa}$
B $\quad 70 \mathrm{kPa}$
C $\quad 933 \mathrm{kPa}$
D $\quad 9,3 \mathrm{kPa}$
18. A gas is confined in a cylinder of constant volume. At $0^{\circ} \mathrm{C}$ the pressure of the gas is 100 kPa . Calculate the temperature (in ${ }^{\circ} \mathrm{C}$) if the pressure is 10 kPa . (4 marks)

A $\quad-245.7^{\circ} \mathrm{C}$
B $\quad 27,3^{\circ} \mathrm{C}$
C $\quad 27,3 \mathrm{~K}$
D $-245,7 \mathrm{~K}$

Total $=90$
$100 \%=90$

