

PROGRAM

: National Diploma

Metallurgical Engineering

SUBJECT

: MECHANICAL METALLURGY

CODE

: TMP 31-1

DATE

: SUMMER EXAMINATION 2016

22 NOVEMBER 2016

DURATION

: (SESSION 2) 12:30 - 15:30

WEIGHTING

: 60%

TOTAL MARKS

: 120

EXAMINER

: Fortunate Moyo

MODERATOR

: Jose Prozzi

NUMBER OF PAGES

: 5

INSTRUCTIONS

: Calculators are permitted

Section A 45 marks

Answer all questions in this section

Question 1

1.1 Define mechanical metallurgy.

[2]

1.2 In the figure below, name the defects labelled (a), (b), and (c).

[3]

1.3 Suggest a word or phrase for the following descriptions.

[6]

- a) A property that does not vary with direction of orientation.
- b) Deformation that is fully recovered when the stress causing it is removed.
- c) Planes along which maximum and minimum normal stresses act.
- d) A dislocation with low mobility.
- e) The temperature above which the strength of a metal increases with increasing grain size.
- f) Failure under the combined effects of a corrosive environment and a static tensile stress.

Question 2

Study the table below carefully.

	Statement (i)	Statement (ii)		
Α	True	False		
В	False	False		
С	False	True		
D	True	True		

Using A, B, C or D from the table above, indicate the True/False combinations valid for the following pairs of descriptions. [14]

- a) **Statement (i):** Stress concentration around a thin crack is higher than around a large spherical pore.
 - Statement (ii): Stress concentration is more detrimental to brittle metals.

- b) Statement (i): The phenomenon of cross slip is restricted to screw dislocations. Statement (ii): At high temperatures, screw dislocations can move out of the slip plane by climb.
- c) **Statement (i):** Transgranular fracture propagates along the grain boundaries. **Statement (ii):** Cup-like depressions are typical of ductile fracture.
- d) Statement (i): BCC metals have the largest number of slip systems, and are therefore very ductile.
 Statement (ii): Lomer-Cotrell barriers contribute to the strain hardening of HCP metals.
- e) **Statement (i):** Below the endurance limit, a material is presumed to have infinite life. **Statement (ii):** Carburizing and nitriding tend to reduce the endurance limit of metals.
- f) Statement (i): Materials with wide staking faults have poor resistance to creep. Statement (ii): At elevated temperatures, deformation may occur along new slip systems.
- g) Statement (i): Nickel, like iron and zinc experiences brittle fracture at low temperatures.
 Statement (ii): Phosphorus increases the ductility transition temperature of steel.

Question 3

- 3.1 A solid rectangular bar measuring: 35 mm x 20mm x 1500 mm in length, is subjected to an axial tensile force of 54 kN along its length. Calculate the stress in the bar. [2]
- 3.2 Define true strain, and calculate the missing values in the table below. [7]

True strain	0.01	0.10	0.20	(a)	1.0	4.0
Engineering strain	0.01	0.11	0.22	0.65	1.72	(b)

- 3.3 Explain how stacking fault energy influences the strain hardening of FCC metals.
- 3.4 State Griffith's theory for brittle fracture. [5]

[6]

Section B 75 marks

Answer only 5 questions in this section. Where more than 5 questions are attempted, only the first 5 will be considered.

All questions carry 15 marks each.

Question 4

4.1 When is a metal classified as ductile? [1]

4.2 Compare the Von Mises and Tresca criteria for yielding of ductile materials. [4]

4.3 When a metal was loaded in simple tension, the graph below was obtained.

Use the Von Mises criterion to determine whether the metal will yield under the following stress state: [10]

 $\sigma_x = 30MPa$

 $\sigma_y = -75MPa$

 $\tau_{xy} = 15MPa$

Question 5

- 5.1 What is a structure insensitive property? Give an example.
- 5.2 Name two surface defects in the figure below, and describe how they are formed. [5]

5.3 How does each of these defects influence the strength and ductility of metals. [8]

Question 6

- 6.1 What is precipitation hardening? [1]
- 6.2 Describe how precipitation hardening differs from dispersion hardening.
- 6.3 Using Al-Cu systems as an example, explain the effect of aging on the strength of precipitation hardened alloys. [8]

Question 7

- 7.1 Define fracture toughness and state how it is affected by temperature. [3]
- 7.2 Describe the plane strain toughness test, and indicate how you would get a valid K_{IC} value. [6]
- 7.3 A steel plate 60 mm thick and 0.5 m wide has a 25 mm long internal crack. The plate is loaded in tension. Given that K_{IC} of the steel is 28.3 MPa \sqrt{m} , determine the maximum stress the plate can withstand without fracture.

[2]

[6]

Question 8

8.1 What stress condition caused the fracture surface in the figure below?

8.2 Describe the stages leading to the fracture in the figure.

- [9]
- 8.3 Is it advisable to use the striations on the fracture surface to approximate life to failure? Give two reasons for your answer. [5]

Question 9

9.1 Differentiate creep and stress rupture.

[2]

9.2 Briefly describe two mechanisms of creep deformation.

- [4]
- 9.3 Discuss ways of increasing creep resistance of alloys, and suggest their limitations. [9]

Question 10

10.1 List the types of metals most susceptible to hydrogen embrittlement.

[3]

- 10.2 Describe how hydrogen embrittlement occurs and explain why it is best detected by slow bend tests rather than impact tests. [6]
- 10.3 Discuss the Charpy test and cite its advantages and disadvantages.

[6]

TOTAL MARKS: 120