

### **MAY & JUNE 2016 EXAMINATION**

PROGRAM : HUMAN MOVEMENT STUDIES

MODULE NAME : KINESIOLOGY 1A

**SECTION A: MUSCULAR & SKELETAL SYSTEMS** 

**SECTION B: BIOMECHANICS** 

MODULE CODES : KIN01A1

HMS1AA1 & HMS2AB1 MBK1A01 & MBK1A02

**BIOK01Y1 (FIRST SEMESTER)** 

**DATE** : 26 MAY 2016

DURATION : 2 HOURS (SECTION A: 60 MIN & SECTION B: 60 MIN)

**TOTAL MARKS** : 100 (50 + 50)

EXAMINER : MRS S FERREIRA

MODERATOR : PROF L LATEGAN

NUMBER OF PAGES : THIS PAPER CONSISTS OF TEN (10) PAGES

#### **INSTRUCTIONS TO CANDIDATES:**

SECTION A: MUSCULAR & SKELETAL SYSTEMS (HMS1AA1 & MBK1A01)

SECTION B: BIOMECHANICS (HMS2AB1 & MBK1A02)

PLEASE MAKE SURE THAT YOU HAVE THE COMPLETE PAPER

AND PLEASE ANSWER ALL THE QUESTIONS.

### **SECTION A: SKELETAL & MUSCULAR SYSTEM**

| QUESTION 1 | [3] |
|------------|-----|
|            | 19  |

Explain the term "kinesiology".

### **QUESTION 2: Please provide the correct answer**

[10]

- 1.1 The term VENTRAL refers:
  - a) The left side of the body
  - b) The top of the body
  - c) The belly/front of
- 1.2 IPSILATERAL is a term used to refer to:
  - a) Opposite side of the body
  - b) Same side of the body
  - c) One side of the body
- 1.3 Identify the plane of motion during HIP EXTENSION.
  - a) Frontal plane
  - b) Sagittal plane
  - c) Transverse plane
- 1.4 Identify the plane of motion through which GLENO-HUMERAL ABDUCTION takes place.
  - a) Frontal plane
  - b) Sagittal plane
  - c) Transverse plane
- 1.5 Identify the axis of rotation around which ELBOW EXTENSION takes place.
  - a) Vertical axis
  - b) Anterior-posterior axis
  - c) Frontal/lateral axis
- 1.6 Identify the axis of rotation around which HIP ABDUCTION takes place.
  - a) Vertical axis
  - b) Anterior-posterior axis
  - c) Frontal/lateral axis
- 1.7 Straightening the elbow may be described as:
  - a) Elbow flexion
  - b) Elbow supination
  - c) Elbow extension
  - d) Elbow pronation

- 1.8 The ELBOW joint can be classified as a:
  - a) Ball-and-socket joint
  - b) Pivot joint
  - c) Hinge joint
- 1.9 The joint at the BASE OF THE THUMB may be classified as a:
  - a) Plane joint
  - b) Hinge joint
  - c) Saddle joint
- 1.10 The cervical spine consists of how many vertebrae?
  - a) 7
  - b) 12
  - c) 5

### QUESTION 3: Provide the correct answers for A-E.

[5]



QUESTION 4 Identify the movement (A) and list three (3) muscles that contract CONCENTRICALLY during this movement



QUESTION 5: Please label the following bone markings A-F.

[6]



QUESTION 6

Describe the origin and insertion of the following muscles:

- a. Supraspinatus
- b. Vastus Medialis

QUESTION 7 [6]

List 6 movements that occur at the hip joint.

## QUESTION 8: Identify the following ligaments (A-D) found at the knee joint [4]



QUESTION 9 [2]

Name two (2) muscles that cause lateral flexion of the spine.

QUESTION 10 [5]

Give the one main function of the following muscles:

- a) Biceps Brachii
- b) Iliopsoas muscle
- c) Rectus Femoris
- d) Soleus
- e) Erector spinae

# QUESTION 11: Label the following diagram (A-D).

[4]



#### **SECTION B: BIOMECHANICS**

QUESTION 1 [4]

Describe the following concepts and give an appropriate example:

- 1.1 Ballistic movement
- 1.2 Open-kinetic chain contraction

QUESTION 2 [15]

Analyse the **Bench Press** by means of an anatomical **a**nalysis. Use the table format below to describe the movement in terms of agonistic muscles for the following joints: glenohumeral joint and elbow joint.

| Phase: | Joint: | Movement: | Agonistic muscles: | Type of      |
|--------|--------|-----------|--------------------|--------------|
| Up /   | GHJ    |           |                    | contraction: |
| Down   | EJ     |           |                    | Con / Ecc    |

QUESTION 3 [4]

What is the main goal of:

- 3.1 Sprinting
- 3.2 Long jump
- 3.3 Marathon running
- 3.4 Gymnastics

| QUESTION 4                                                                                                                                | [5] |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Describe the following postural deviations:                                                                                               |     |
| 3.1 Scheuermann's                                                                                                                         |     |
| 3.2 Genu recurvatum                                                                                                                       |     |
| 3.3 Kyphosis                                                                                                                              |     |
| 3.4 Pes planus                                                                                                                            |     |
| 3.5 Hallux valgus                                                                                                                         |     |
| 3.6 Genu varum                                                                                                                            |     |
|                                                                                                                                           |     |
| QUESTION 5                                                                                                                                | [2] |
| Determine the kinetic energy of an object weighing 1000 kg and traveling at 40 km/h.                                                      |     |
| QUESTION 6                                                                                                                                | [2] |
| Calculate the distance in metres that an athlete covers if he runs for 1 hour                                                             |     |
| at an average velocity of 13 km/h.                                                                                                        |     |
|                                                                                                                                           |     |
| QUESTION 7                                                                                                                                | [2] |
| Determine the height from which a ball was dropped if it took 5 seconds to hit the ground (you may ignore the effects of air resistance). |     |
| QUESTION 8                                                                                                                                | [4] |

Determine the extra amount of work generated by a person with a height of 1.7 m

1.5 m above the ground.

and weighing 87 kg, lifting 20 boxes weighing 20 kg each from the ground to a shelf

QUESTION 9 [2]

Calculate the force needed to generate 350 Nm of torque using a lever 75 cm in length.

QUESTION 10

A javelin thrower delivers the javelin at an angle of 50° at a velocity of 22 m/s. Calculate the vertical velocity of the javelin.

QUESTION 11 [4]

Calculate the power generated by a weight lifter who performs 10 repetitions of the bench press exercise with a weight of 90 kg in 15 seconds; the weight is lifted 65 cm from the starting position.

TOTAL: [100]

## **Formulas**

v = s/t

velocity = displacement / time

a = (v-u)/t

acceleration = (final vel. -initial vel.)/time

 $s = ut + \frac{1}{2}at^2$ 

v = u + at

 $v^2 = u^2 + 2as$ 

Where: u = initial velocity, v = final velocity, t = time and a = acceleration

F = ma

Force = mass x acceleration

Ft = m(v - u) Impulse = mass (final velocity – initial velocity)

W = Fs

Work = Force x distance

P = W/t

Power = Work / time

PE = mgh

Potential Energy = mass x gravity x height

 $KE = \frac{1}{2} mv^2$ 

Kinetic Energy =  $\frac{1}{2}$  x mass x (velocity)<sup>2</sup>

M = mv

Momentum = mass x velocity

E x EA = R x RA Effort x Effort arm = Resistance x Resistance arm

MA = R/E

Mechanical Advantage = Resistance / Effort

 $T = F \times \perp d$ 

Toque = Force x perpendicular distance